49 research outputs found

    Pollination of the European food-deceptive Traunsteinera globosa (Orchidaceae): the importance of nectar-producing neighbouring plants

    Get PDF
    European food-deceptive orchids generally flower early in spring and rely on naïve pollinators for their reproduction. Some species however, flower later in the summer, when many other rewarding plants species are also in bloom. In dense flowering communities, deceptive orchids may suffer from competition for pollinator resources, or might alternatively benefit from higher community attractiveness. We investigated the pollination strategy of the deceptive species Traunsteinera globosa, and more specifically whether it benefited from the presence of coflowering rewarding species. We carried out a population survey to quantify the density and reproductive success of the orchid as well as the density of all coflowering species. Our results suggest that the deceptive orchid not only benefited from the presence of coflowering species, but that interestingly the density of the species Trifolium pratense was significantly positively correlated with the orchid's reproductive success. This species might simply act as a magnet species attracting pollinators near T. globosa, or could influence the orchid reproductive fitness through a more species-specific interaction. We propose that morphological or colour similarities between the two species should be investigated in more detail to decipher this pollination facilitation effec

    Experimental investigation of the effect of spatial aggregation on reproductive success in a rewardless orchid

    Get PDF
    Plant reproductive success within a patch may depend on plant aggregation through pollinator attraction. For rewardless plants that lack rewards for pollinators, reproductive success may rely strongly on the learning abilities of pollinators. These abilities depend on relative co-flowering rewarding and rewardless plant species spatial distributions. We investigated the effect of aggregation on the reproductive success of a rewardless orchid by setting up 16 arrays in a factorial design with two levels of intraspecific aggregation for both a rewardless orchid and a rewarding co-flowering species. Our results show that increasing aggregation of both species negatively influenced the reproductive success of the rewardless plants. To our knowledge, this is the first experimental study demonstrating negative effects of aggregation on reproductive success of a rewardless species due both to its own spatial aggregation and that of a co-flowering rewarding species. We argue that pollinator learning behaviour is the key driver behind this result

    Do rewardless orchids show a positive relationship between phenotypic diversity and reproductive success?

    Get PDF
    Among rewardless orchids, pollinator sampling behavior has been suggested to drive a positive relationship between population phenotypic variability and absolute reproductive success, and hence population fitness. We tested this hypothesis by constructing experimental arrays using the rewardless orchid Dactylorhiza sambucina, which is dimorphic for corolla color. We found no evidence that polymorphic arrays had higher mean reproductive success than monomorphic arrays for pollinia removal, pollen deposition, or fruit set. For pollinia removal, monomorphic yellow arrays had significantly greater reproductive success, and monomorphic red the least. A tendency for yellow arrays to have higher pollen deposition was also found. We argue that differential population fitness was most likely to reflect differential numbers of pollinators attracted to arrays, through preferential long-distance attraction to arrays with yellow inflorescences. Correlative studies of absolute reproductive success in 52 populations of D. sambucina supported our experimental results. To our knowledge this is the first study to suggest that attraction of a greater number of pollinators to rewardless orchids may be of greater functional importance to population fitness, and thus ecology and conservation, than are the behavioral sequences of individual pollinators

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt

    The evolution of empty flowers revisited

    No full text
    The evolution of plants that provide no form of reward for their pollinators is puzzling because they receive low numbers of pollinator visits and so have low reproductive success. To predict the evolutionary dynamics of empty morphs within a plant population, we modeled different foraging strategies that pollinators could use to avoid them. We predicted that the optimal strategy was to visit empty inflorescences randomly when these were infrequent but to use strategies such as visiting fewer flowers per inflorescence to avoid wasting time on them. As the frequencies of empty inflorescences increased, discriminating directly against empty morphs was more likely to be an optimal strategy than was avoiding the species altogether and switching to an alternative one. An experimental test of this model using artificial inflorescences showed that bumblebees used a variety of strategies to minimize time wasted on empty inflorescences. They showed weak discrimination against empty inflorescences but switched to an alternative type of inflorescence as the frequency of empty inflorescences increased. We predicted that empty morphs would be at a visitation rate disadvantage even when at low frequencies in a plant population. Differences in outcrossing rates, or male function, may explain how rewardlessness spreads in a plant population
    corecore