4,471 research outputs found

    Engineering exotic phases for topologically-protected quantum computation by emulating quantum dimer models

    Full text link
    We use a nonperturbative extended contractor renormalization (ENCORE) method for engineering quantum devices for the implementation of topologically protected quantum bits described by an effective quantum dimer model on the triangular lattice. By tuning the couplings of the device, topological protection might be achieved if the ratio between effective two-dimer interactions and flip amplitudes lies in the liquid phase of the phase diagram of the quantum dimer model. For a proposal based on a quantum Josephson junction array [L. B. Ioffe {\it et al.}, Nature (London) {\bf 415}, 503 (2002)] our results show that optimal operational temperatures below 1 mK can only be obtained if extra interactions and dimer flips, which are not present in the standard quantum dimer model and involve three or four dimers, are included. It is unclear if these extra terms in the quantum dimer Hamiltonian destroy the liquid phase needed for quantum computation. Minimizing the effects of multi-dimer terms would require energy scales in the nano-Kelvin regime. An alternative implementation based on cold atomic or molecular gases loaded into optical lattices is also discussed, and it is shown that the small energy scales involved--implying long operational times--make such a device impractical. Given the many orders of magnitude between bare couplings in devices, and the topological gap, the realization of topological phases in quantum devices requires careful engineering and large bare interaction scales.Comment: 12 pages, 10 figure

    Neutrino Telescopes' Sensitivity to Dark Matter

    Full text link
    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can definitely discover or exclude superheavy (M > 10^10 GeV) Strong Interacting Massive Particles (Simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of the Simpzilla parameter space.Comment: 28 pages, 9 figure

    An adaptive cross approximation (ACA) for the extended boundary element method (XBEM) in anisotropic materials

    Get PDF
    The extended boundary element method (XBEM) is a modification from the standard BEM, where enrichment functions are embedded into the BEM formulation. The results obtained with this method were seen to be accurate and stable, being especially useful for fracture problems. However, the method suffers from the presence of a linear system containing unsymmetric and fully populated matrices which needs to be solved in order to get the solution of the boundary problem. This can be computationally expensive for problems dealing with multiple cracks for instance. Adaptive cross approximation (ACA) is used to reduce the number of operations necessary to solve the linear system of equations for a fracture problem with an anisotropic material

    Fluctuating Dimension in a Discrete Model for Quantum Gravity Based on the Spectral Principle

    Full text link
    The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric and dimension can fluctuate. The model describes the geometry of spaces with a countable number nn of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value ,theaveragenumberofpointsintheuniverse,isfiniteinonephaseanddivergesintheother.Wecomputethecriticalpointaswellasthecriticalexponentof, the average number of points in the universe, is finite in one phase and diverges in the other. We compute the critical point as well as the critical exponent of . Moreover, the space-time dimension δ\delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, <2 < 2.Comment: 10 pages, no figures. Third version: This new version emphasizes the spectral principle rather than the spectral action. Title has been changed accordingly. We also reformulated the computation of the dimension, and added a new reference. To appear in Physical Review Letter
    corecore