466 research outputs found

    Constructing the Cubic Interaction Vertex of Higher Spin Gauge Fields

    Get PDF
    We propose a method of construction of a cubic interaction in massless Higher Spin gauge theory both in flat and in AdS space-times of arbitrary dimensions. We consider a triplet formulation of the Higher Spin gauge theory and generalize the Higher Spin symmetry algebra of the free model to the corresponding algebra for the case of cubic interaction. The generators of this new algebra carry indexes which label the three Higher Spin fields involved into the cubic interaction. The method is based on the use of oscillator formalism and on the Becchi-Rouet-Stora-Tyutin (BRST) technique. We derive general conditions on the form of cubic interaction vertex and discuss the ambiguities of the vertex which result from field redefinitions. This method can in principle be applied for constructing the Higher Spin interaction vertex at any order. Our results are a first step towards the construction of a Lagrangian for interacting Higher Spin gauge fields that can be holographically studied.Comment: Published Version; comments added in introduction; minor typos and references correcte

    First principles study on the segregation of metallic solutes and non-metallic impurities in Cu grain boundary

    Full text link
    Metallic dopants have the potential to increase the mechanical strength of polycrystalline metals. These elements are expected to aggregate in regions of lower coordination, such as grain boundaries. At the grain boundaries, they can have a beneficial (toughening) or detrimental effect (e.g. grain boundary embrittlement). In this study, we employ Density Functional Theory (DFT) to compute the segregation energies of various metallic and other non-metallic elements to determine their effect when introduced in a symmetric Cu grain boundary. The study results may be used to qualitatively rank the beneficial effect of certain metallic elements, such as V, Zr, and Ag, as well as the strong weakening effect of non-metallic impurities like O, S, F and P. Furthermore, the induced local distortion is found to be proportional to the weakening effect of the elements

    BRST approach to Lagrangian formulation of bosonic totally antisymmeric tensor fields in curved space

    Full text link
    We apply the BRST approach, previously developed for higher spin field theories, to gauge invariant Lagrangian construction for antisymmetric massive and massless bosonic fields in arbitrary d-dimensional curved space. The obtained theories are reducible gauge models both in massless and massive cases and the order of reducibility grows with the value of the rank of the antisymmetric field. In both the cases the Lagrangians contain the sets of auxiliary fields and possess more rich gauge symmetry in comparison with standard Lagrangian formulation for the antisymmetric fields. This serves additional demonstration of universality of the BRST approach for Lagrangian constructions in various field models.Comment: 12 page

    On manifolds admitting the consistent Lagrangian formulation for higher spin fields

    Full text link
    We study a possibility of Lagrangian formulation for free higher spin bosonic totally symmetric tensor field on the background manifold characterizing by the arbitrary metric, vector and third rank tensor fields in framework of BRST approach. Assuming existence of massless and flat limits in the Lagrangian and using the most general form of the operators of constraints we show that the algebra generated by these operators will be closed only for constant curvature space with no nontrivial coupling to the third rank tensor and the strength of the vector fields. This result finally proves that the consistent Lagrangian formulation at the conditions under consideration is possible only in constant curvature Riemann space.Comment: 11 pages; v2: minor typos corrected, a reference adde

    Energies and structures of Cu/Nb and Cu/W interfaces from density functional theory and semi-empirical calculations

    Get PDF
    Cu/Me multilayer systems, with Me referring to a body-centered cubic () metal, such as Nb and W, are widely used for nuclear, electrical, and electronic applications. Despite making up only a small percentage of the volume, interfaces in such systems play a major role in determining their electrical, mechanical, thermal and diffusion properties. Face-centered cubic () Cu often forms Kurdjumov-Sachs (KS) and Nishiyama-Wassermann (NW) type interfaces with metals or variations thereof. For the Cu/Nb system, these interface relationships have been extensively studied with semi-empirical methods. Surprisingly, the energetics and interface properties of Cu/W have not yet been studied in detail, in spite of extensive applications. In this study, we employ both periodic Embedded Atom Method (EAM) and Density Functional Theory (DFT) simulations to explore the geometric and energetic properties of the KS and NW interfaces of Cu/Nb and Cu/W. To assess the reliability of our approach, the dependence of the results on the size of periodic cells is examined for coherent and incoherent interfaces. We provide the interface energies and the work of separation for the Cu/W and Cu/Nb interfaces at DFT accuracy. The results of calculations with two EAM potentials are in qualitative agreement with those obtained using DFT and allow investigating the convergence of interfacial properties. These key energetic quantities can be used for future thermodynamic and mechanical modeling of Cu/Me interfaces

    Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

    Get PDF
    We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases the likelihood ratio statistic results in an improved analysis.Comment: 10 pages, 6 figure

    Remarks on Two-Loop Free Energy in N=4 Supersymmetric Yang-Mills Theory at Finite Temperature

    Full text link
    The strong coupling behavior of finite temperature free energy in N=4 supersymmetric SU(N) Yang-Mills theory has been recently discussed by Gubser, Klebanov and Tseytlin in the context of AdS-SYM correspondence. In this note, we focus on the weak coupling behavior. As a result of a two-loop computation we obtain, in the large N 't Hooft limit, F(g2N0)π26N2V3T4(132π2g2N)F(g^2N\to 0)\approx -\frac{\pi^2}{6}N^2V_3T^4(1-\frac{3}{2\pi^2}g^2N). Comparison with the strong coupling expansion provides further indication that free energy is a smooth monotonic function of the coupling constant.Comment: 5 pages, 1 figure; final form, Physical Review

    Exploring improved holographic theories for QCD: Part I

    Get PDF
    Various holographic approaches to QCD in five dimensions are explored using input both from the putative non-critical string theory as well as QCD. It is argued that a gravity theory in five dimensions coupled to a dilaton and an axion may capture the important qualitative features of pure QCD. A part of the higher alpha' corrections are resummed into a dilaton potential. The potential is shown to be in one-to-one correspondence with the exact beta-function of QCD, and its knowledge determines the full structure of the vacuum solution. The geometry near the UV boundary is that of AdS_5 with logarithmic corrections reflecting the asymptotic freedom of QCD. We find that all relevant confining backgrounds have an IR singularity of the "good" kind that allows unambiguous spectrum computations. Near the singularity the 't Hooft coupling is driven to infinity. Asymptotically linear glueball masses can also be achieved. The classification of all confining asymptotics, the associated glueball spectra and meson dynamics are addressed in a companion paper, ArXiv:0707.1349Comment: 37+23 pages, 11 figures. (v3) Some clarifications and typo corrections. Journal versio

    Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study

    Get PDF
    Voids in face-centered cubic (fcc) metals are commonly assumed to form via the aggregation of vacancies; however, the mechanisms of vacancy clustering and diffusion are not fully understood. In this study, we use computational modeling to provide a detailed insight into the structures and formation energies of primary vacancy clusters, mechanisms and barriers for their migration in bulk copper, and how these properties are affected at simple grain boundaries. The calculations were carried out using embedded atom method (EAM) potentials and density functional theory (DFT) and employed the site-occupation disorder code (SOD), the activation relaxation technique nouveau (ARTn) and the knowledge led master code (KLMC). We investigate stable structures and migration paths and barriers for clusters of up to six vacancies. The migration of vacancy clusters occurs via hops of individual constituent vacancies with di-vacancies having a significantly smaller migration barrier than mono-vacancies and other clusters. This barrier is further reduced when di-vacancies interact with grain boundaries. This interaction leads to the formation of self-interstitial atoms and introduces significant changes into the boundary structure. Tetra-, penta-, and hexa-vacancy clusters exhibit increasingly complex migration paths and higher barriers than smaller clusters. Finally, a direct comparison with the DFT results shows that EAM can accurately describe the vacancy-induced relaxation effects in the Cu bulk and in grain boundaries. Significant discrepancies between the two methods were found in structures with a higher number of low-coordinated atoms, such as penta-vacancies and di-vacancy absortion by grain boundary. These results will be useful for modeling the mechanisms of diffusion of complex defect structures and provide further insights into the structural evolution of metal films under thermal and mechanical stress
    corecore