1,615 research outputs found

    Data driving the top quark forward--backward asymmetry with a lepton-based handle

    Full text link
    We propose that, within the standard model, the correlation between the ttˉt\bar{t} forward--backward asymmetry AttˉA_{t\bar t} and the corresponding lepton-based asymmetry AlA_l -- at the differential level -- is strong and rather clean both theoretically and experimentally. Hence a combined measurement of the two distributions as a function of the lepton pTp_T, a direct and experimentally clean observable, would lead to a potentially unbiased and normalization-free test of the standard model prediction. To check the robustness of our proposal we study how the correlation is affected by mis-measurement of the ttˉt\bar t system transverse momenta, acceptance cuts, scale dependence and compare the results of MCFM, POWHEG (with & without PYTHIA showering), and SHERPA's CSSHOWER in first-emission mode. We find that the shape of the relative differential distribution Al(pTl)[Attˉ(pTl)]A_{l} (p^{l}_{T}) [A_{t\bar{t}} (p^l_T)] is only moderately distorted hence supporting the usefulness of our proposal. Beyond the first emission, we find that the correlation is not accurately captured by lowest-order treatment. We also briefly consider other differential variables such as the system transverse mass and the canonical ttˉt\bar t invariant mass. Finally, we study new physics scenarios where the correlation is significantly distorted and therefore can be more readily constrained or discovered using our method.Comment: 27 pages, 12 figure

    Discretizing Gravity in Warped Spacetime

    Full text link
    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.Comment: 17 pages, 4 figures; references adde

    Radius-dependent gauge unification in AdS5

    Get PDF
    We examine the relation of the 4-dimensional low energy coupling of bulk gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a function of the orbifold radius R. This allows us to address the gauge coupling unification in AdS5 by means of the radius running as well as the conventional momentum running. We then compute the radius dependence of 1-loop low energy couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss the low energy predictions when the 5-dimensional couplings are assumed to be unified.Comment: 11 pages, 2 figures, revtex, v3: analysis was generalized to S^1/Z_2*Z_2 orbifoldin

    Gauge Theories in AdS5AdS_5 and Fine-Lattice Deconstruction

    Full text link
    The logarithmic energy dependence of gauge couplings in AdS_5 emerges almost automatically when the theory is deconstructed on a coarse lattice. Here we study the theory away from the coarse-lattice limit. While we cannot analytically calculate individual KK masses for a fine lattice, we can calculate the product of all non-zero masses. This allows us to write down the gauge coupling at low energies for any lattice-spacing and curvature. As expected, the leading log behaviour is corrected by power-law contributions, suppressed by the curvature. We then turn to intermediate energies, and discuss the gauge coupling and the gauge boson profile in perturbation theory around the coarse-lattice limit.Comment: 17 pages, 1 figure, typos in listing version of abstract correcte

    One loop gauge couplings in AdS5

    Full text link
    We calculate the full 1-loop corrections to the low energy coupling of bulk gauge boson in a slice of AdS5 which are induced by generic 5-dimensional scalar, Dirac fermion, and vector fields with arbitrary Z_2 times Z_2' orbifold boundary conditions. In supersymmetric limit, our results correctly reproduce the results obtained by an independent method based on 4-dimensional effective supergravity. This provides a nontrivial check of our results and assures the regularization scheme-independence of the results.Comment: RevTeX, 22 pages, 2 figures, some typos corrected and notations change

    Holography, Pade Approximants and Deconstruction

    Get PDF
    We investigate the relation between holographic calculations in 5D and the Migdal approach to correlation functions in large N theories. The latter employs Pade approximation to extrapolate short distance correlation functions to large distances. We make the Migdal/5D relation more precise by quantifying the correspondence between Pade approximation and the background and boundary conditions in 5D. We also establish a connection between the Migdal approach and the models of deconstructed dimensions.Comment: 28 page

    Warped Domain Wall Fermions

    Full text link
    We consider Kaplan's domain wall fermions in the presence of an Anti-de Sitter (AdS) background in the extra dimension. Just as in the flat space case, in a completely vector-like gauge theory defined after discretizing this extra dimension, the spectrum contains a very light charged fermion whose chiral components are localized at the ends of the extra dimensional interval. The component on the IR boundary of the AdS space can be given a large mass by coupling it to a neutral fermion via the Higgs mechanism. In this theory, gauge invariance can be restored either by taking the limit of infinite proper length of the extra dimension or by reducing the AdS curvature radius towards zero. In the latter case, the Kaluza-Klein modes stay heavy and the resulting classical theory approaches a chiral gauge theory, as we verify numerically. Potential difficulties for this approach could arise from the coupling of the longitudinal mode of the light gauge boson, which has to be treated non-perturbatively

    Tools for Deconstructing Gauge Theories in AdS5

    Get PDF
    We employ analytical methods to study deconstruction of 5D gauge theories in the AdS5 background. We demonstrate that using the so-called q-Bessel functions allows a quantitative analysis of the deconstructed setup. Our study clarifies the relation of deconstruction with 5D warped theories.Comment: 30 pages; v2: several refinements, references adde

    Soft-Wall Stabilization

    Full text link
    We propose a general class of five-dimensional soft-wall models with AdS metric near the ultraviolet brane and four-dimensional Poincar\'e invariance, where the infrared scale is determined dynamically. A large UV/IR hierarchy can be generated without any fine-tuning, thus solving the electroweak/Planck scale hierarchy problem. Generically, the spectrum of fluctuations is discrete with a level spacing (mass gap) provided by the inverse length of the wall, similar to RS1 models with Standard Model fields propagating in the bulk. Moreover two particularly interesting cases arise. They can describe: (a) a theory with a continuous spectrum above the mass gap which can model unparticles corresponding to operators of a CFT where the conformal symmetry is broken by a mass gap, and; (b) a theory with a discrete spectrum provided by linear Regge trajectories as in AdS/QCD models.Comment: 27 pages, 6 figures, 1 table. v2: references added, version to appear in NJP Focus Issue on Extra Dimension
    • …
    corecore