84 research outputs found

    Flux lattice melting in the high Tc superconductors

    Get PDF
    One of the important issues for technological application of the high temperature superconductors is their behavior in a magnetic field. A variety of experiments including electrical transport, mechanical oscillators, and magnetic decoration have suggested that these magnetic properties will make applications more difficult than originally anticipated. These experiments and their results are briefly discussed

    ARPES Line Shapes in FL and non-FL Quasi-Low-Dimensional Inorganic Metals

    Full text link
    Quasi-low-dimensional (quasi-low-D) inorganic materials are not only ideally suited for angle resolved photoemission spectroscopy (ARPES) but also they offer a rich ground for studying key concepts for the emerging paradigm of non-Fermi liquid (non-FL) physics. In this article, we discuss the ARPES technique applied to three quasi-low-D inorganic metals: a paradigm Fermi liquid (FL) material TiTe2_{2}, a well-known quasi-1D charge density wave (CDW) material K0.3_{0.3}MoO3_{3} and a quasi-1D non-CDW material Li0.9_{0.9}Mo6_{6}O17_{17}. With TiTe2_2, we establish that a many body theoretical interpretation of the ARPES line shape is possible. We also address the fundamental question of how to accurately determine the {\bf k}F_F value from ARPES. Both K0.3_{0.3}MoO3_{3} and Li0.9_{0.9}Mo6_{6}O17_{17} show quasi-1D electronic structures with non-FL line shapes. A CDW gap opening is observed for K0.3_{0.3}MoO3_{3}, whereas no gap is observed for Li0.9_{0.9}Mo6_{6}O17_{17}. We show, however, that the standard CDW theory, even with strong fluctuations, is not sufficient to describe the non-FL line shapes of K0.3_{0.3}MoO3_{3}. We argue that a Luttinger liquid (LL) model is relevant for both bronzes, but also point out difficulties encountered in comparing data with theory. We interpret this situation to mean that a more complete and realistic theory is necessary to understand these data.Comment: 23 pages, including 21 figures; to appear in a special issue of J. Elec. Spectr. Rel. Pheno

    Fermi surfaces and single-particle spectral functions of low-dimensional inorganic non-cuprate compounds: the molybdenum bronzes

    Full text link
    The Fermi surfaces and single-particle spectral functions of several low-dimensional materials have been measured as part of an effort to assess the occurrence of non-Fermi-liquid behaviour in non-cuprate materials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48877/2/c64816.pd

    Superconductivity-induced Resonance Raman Scattering in Multi-layer High-Tc Superconductors

    Full text link
    Resonant Raman scattering below Tc has been discovered in several Bi-, Hg-, Tl-based high-Tc superconductors with three or four CuO2-layers. For Bi2Si2Ca2Cu3O10+d, we found an unexpected crossover of the pair-breaking peak in the A1g-spectrum from a broad bump at hw = 6kBTc for Eexc = 2.54eV to a sharp peak at hw = 8kBTc for Eexc = 2.18eV, together with a strong enhancement of the Ca-phonons. Under resonant conditions, the relative positions of the pair breaking peaks in A1g, B1g, and B2g channels are 2Delta(A1g) = 2Delta(B1g) > 2Delta(B2g). This relation implies that the A1g Raman channel is free from the Coulomb screening effect, just as predicted theoretically for a d-wave multi-layer superconductor but have never been observed experimentally thus far. The observed resonance effect is the evidence that the electronic state in the inner CuO2-planes is different from that of the outer CuO2-planes.Comment: 16 pages, 6 figures. submitted to Phys.Rev.

    InP and CdS Photoanodes in Concentrated Aqueous Iodide Electrolytes

    No full text

    Electrochemical Synthesis of Photoactive MoS2

    No full text
    corecore