204 research outputs found

    Exchange-coupled Chromium Ion Pairs in Ruby

    Get PDF
    Exchange-coupled chromium ion pairs in ruby, and application of piezospectroscopic effect to laser technolog

    Soliton blue-shift in tapered photonic crystal fiber

    Full text link
    We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.Comment: 10 pages, 4 figure

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure

    Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points

    Full text link
    In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation and pair-photon sources for quantum optics

    Understanding the dynamics of photoionization-induced solitons in gas-filled hollow-core photonic crystal fibers

    Full text link
    We present in detail our developed model [Saleh et al., Phys. Rev. Lett. 107] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizing gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blue-shift in the frequency domain. By applying the Gagnon-B\'{e}langer gauge transformation, multi-peak `inverted gravity-like' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range non-local interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the resonant radiation in the UV [Joly et al., Phys. Rev. Lett. 106] can be improved via plasma formation.Comment: 9 pages, 10 figure

    Controlling pulse propagation in optical fibers through nonlinearity and dispersion management

    Full text link
    In case of the nonlinear Schr\"odinger equation with designed group velocity dispersion, variable nonlinearity and gain/loss; we analytically demonstrate the phenomenon of chirp reversal crucial for pulse reproduction. Two different scenarios are exhibited, where the pulses experience identical dispersion profiles, but show entirely different propagation behavior. Exact expressions for dynamical quasi-solitons and soliton bound-states relevant for fiber communication are also exhibited.Comment: 4 pages, 5 eps figure

    Modulational instability and solitons in excitonic semiconductor waveguides

    Full text link
    Nonlinear light propagation in a single-mode micron-size waveguide made of semiconducting excitonic material has been theoretically studied in terms of exciton-polaritons by using an analysis based on macroscopic fields. When a light pulse is spectrally centered in the vicinity of the ground-state Wannier exciton resonance, it interacts with the medium nonlinearly. This optical cubic nonlinearity is caused by the repulsive exciton-exciton interactions in the semiconductor, and at resonance it is orders of magnitude larger than the Kerr nonlinearity (e.g., in silica). We demonstrate that a very strong and unconventional modulational instability takes place, which has not been previously reported. After reducing the problem to a single nonlinear Schr\"odinger-like equation, we also explore the formation of solitary waves both inside and outside the polaritonic gap and find evidence of spectral broadening. A realistic physical model of the excitonic waveguide structure is proposed.Comment: 7 pages (2-column), 7 figure

    Noise-induced perturbations of dispersion-managed solitons

    Full text link
    We study noise-induced perturbations of dispersion-managed solitons by developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte-Carlo simulations and reconstruct the probability density functions of the solution parameters under the effect of noise.Comment: 12 pages, 6 figure

    Formation of matter-wave soliton molecules

    Full text link
    We propose a method of forming matter-wave soliton molecules that is inspired by the recent experiment of Dris {\it et al.}. In the proposed set-up we show that if two solitons are initially prepared in phase and with a sufficiently small separation and relative velocity, a bound pair will always form. This is verified by direct numerical simulation of the Gross-Pitaevskii equation and by the derivation of the exact interaction energy of two solitons, which takes the form of a Morse potential. This interaction potential depends not only on the separation but also on the relative phase of the solitons and is essential for an analytical treatment of a host of other problems, such as the soliton gas and the Toda lattice of solitons.Comment: 4 pages, 3 figure
    • …
    corecore