19 research outputs found

    The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses

    Get PDF
    The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.</p

    alphabeta T cell receptors as predictors of health and disease

    Get PDF
    The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR \u27signatures\u27 raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome

    Development of Interleukin-17-Producing γδ T Cells Is Restricted to a Functional Embryonic Wave.

    No full text
    γδ T cells are an important innate source of interleukin-17 (IL-17). In contrast to T helper 17 (Th17) cell differentiation, which occurs in the periphery, IL-17-producing γδ T cells (γδT17 cells) are probably committed during thymic development. To study when γδT17 cells arise during ontogeny, we used TcrdH2BeGFP reporter mice to monitor T cell receptor (TCR) rearrangement and IL-17 production in the embryonic thymus. We observed that several populations such as innate lymphoid cells and early T cell precursors were able to produce IL-17 prior to (and thus independent of) TCR recombination. γδT17 cells were absent after transplantation of IL-17-sufficient bone marrow into mice lacking both Il17a and Il17f. Also, γδT17 cells were not generated after genetic restoration of defective Rag1 function in adult mice. Together, these data suggested that these cells developed exclusively before birth and subsequently persisted in adult mice as self-renewing, long-lived cells

    Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation

    Get PDF
    Yang B-H, Hagemann S, Mamareli P, et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunology. 2016;9(2):444-457.Foxp3 (forkhead box P3 transcription factor)-expressing regulatory T cells (Tregs) are essential for immunological tolerance, best illustrated by uncontrolled effector T-cell responses and autoimmunity upon loss of Foxp3 expression. Tregs can adopt specific effector phenotypes upon activation, reflecting the diversity of functional demands in the different tissues of the body. Here, we report that Foxp3+CD4+ T cells coexpressing retinoic acid-related orphan receptor-γt (RORγt), the master transcription factor for T helper type 17 (Th17) cells, represent a stable effector Treg lineage. Transcriptomic and epigenetic profiling revealed that Foxp3+RORγt+ T cells display signatures of both Tregs and Th17 cells, although the degree of similarity was higher to Foxp3+RORγt− Tregs than to Foxp3−RORγt+ T cells. Importantly, Foxp3+RORγt+ T cells were significantly demethylated at Treg-specific epigenetic signature genes such as Foxp3, Ctla-4, Gitr, Eos, and Helios, suggesting that these cells have a stable regulatory rather than inflammatory function. Indeed, adoptive transfer of Foxp3+RORγt+ T cells in the T-cell transfer colitis model confirmed their Treg function and lineage stability in vivo, and revealed an enhanced suppressive capacity as compared with Foxp3+RORγt− Tregs. Thus, our data suggest that RORγt expression in Tregs contributes to an optimal suppressive capacity during gut-specific immune responses, rendering Foxp3+RORγt+ T cells as an important effector Treg subset in the intestinal system
    corecore