46 research outputs found

    Technology and the ‘servicelisation’ of labour: from immateriality to innovative uncertainty

    Get PDF
    This article discusses the concepts of ‘servicelisation’ of labour and innovation incomplex organisational contexts. We consider that, at the present stage of societaldevelopment, the expansion of services itself represents the course from one industrialmodel to another, i.e. to a set of ways or methods of producing that are different.It is thus possible to speak of a ‘configuration of users’. In a ‘service economy’, theservice products are global and are not generally decomposable, so that it is thecustomer/user who assesses the satisfaction involved in consuming them, even beingable to intervene in their production. Besides, technology and immateriality are nowfundamental to the service logic. This article also proposes some alternative ways foranalysing the organisational structures dealing with such new phenomena

    Maternal high fat diet compromises survival and modulates lung development of offspring, and impairs lung function of dams (female mice)

    Get PDF
    © 2019 The Author(s). Published in Respiratory Research. Background: Epidemiological studies have identified strong relationships between maternal obesity and offspring respiratory dysfunction; however, the causal direction is not known. We tested whether maternal obesity alters respiratory function of offspring in early life. Methods: Female C57Bl/6 J mice were fed a high or low fat diet prior to and during two rounds of mating and resulting pregnancies with offspring lung function assessed at 2 weeks of age. The lung function of dams was measured at 33 weeks of age. Results: A high fat diet caused significant weight gain prior to conception with dams exhibiting elevated fasting glucose, and glucose intolerance. The number of surviving litters was significantly less for dams fed a high fat diet, and surviving offspring weighed more, were longer and had larger lung volumes than those born to dams fed a low fat diet. The larger lung volumes significantly correlated in a linear fashion with body length. Pups born from the second pregnancy had reduced tissue elastance compared to pups born from the first pregnancy, regardless of the dam's diet. As there was reduced offspring survival born to dams fed a high fat diet, the statistical power of lung function measures of offspring was limited. There were signs of increased inflammation in the bronchoalveolar lavage fluid of dams (but not offspring) fed a high fat diet, with more tumour necrosis factor-α, interleukin(IL)-5, IL-33 and leptin detected. Dams that were fed a high fat diet and became pregnant twice had reduced fasting glucose immediately prior to the second mating, and lower levels of IL-33 and leptin in bronchoalveolar lavage fluid. Conclusions: While maternal high fat diet compromised litter survival, it also promoted somatic and lung growth (increased lung volume) in the offspring. Further studies are required to examine downstream effects of this enhanced lung volume on respiratory function in disease settings

    Progress in Diamond Detector Development

    Get PDF
    Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cm−2 and 1 · 1017 n cm−2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 ”m×50 ”m with columns of 2.6 ”m in diameter and 100 ”m×150 ”m with columns of 4.6 ”m in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors

    Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study

    Get PDF
    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and “hot filtration” experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide–iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure

    Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung

    Get PDF

    A complete conclusion-based procedure for judgment aggregation

    Get PDF
    Judgment aggregation is a formal theory reasoning about how a group of agents can aggregate individual judgments on connected propositions into a collective judgment on the same propositions. Three procedures for successfully aggregating judgments sets are: premise-based procedure, conclusion-based procedure and distance-based merging. The conclusion-based procedure has been little investigated because it provides a way to aggregate the conclusions, but not the premises, thus it outputs an incomplete judgment set. The goal of this paper is to present a conclusion-based procedure outputting complete judgment sets

    RF pulse amplifier for CVD-diamond particle detectors

    No full text
    International audienceThis article introduces a design of a Low Noise Amplifier (LNA), for the field of diamond particle detectors. This amplifier is described from simulation to measurements, which include pulses from α particles detection. In hadron therapy, with high-frequency pulsed particle beams, the diamond detector is a promising candidate for beam monitoring and time-stamping, with prerequisite of fast electronics. The LNA is designed with surface mounted components and RF layout techniques to control costs and to allow timing performance suitable for sub-nanosecond edges of pulses. Also this amplifier offers the possibility of high voltage biasing, a characteristic essential for driving diamond detectors. Finally the greatest asset of this study is certainly the minimization of the power consumption, which allows us to consider designs with multiple amplifiers, in limited space, for striped diamond detectors
    corecore