11 research outputs found

    Functional kinomics establishes a critical node of volume-sensitive cation-Cl<sup>-</sup> cotransporter regulation in the mammalian brain

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/33424Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.We thank the excellent technical support of the MRC-Protein Phosphorylation and Ubiquitylation Unit (PPU) DNA Sequencing Service (coordinated by Nicholas Helps), the MRC-PPU tissue culture team (coordinated by Laura Fin), the Division of Signal Transduction Therapy (DSTT) antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We are grateful to the MRC PPU Proteomics facility (coordinated by David Campbell, Robert Gourlay and Joby Varghese). We thank for support the Medical Research Council (MC_UU_12016/2; DRA) and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer; DRA). We thank Thomas J. Jentsch (Max-Delbrück-Centrum für Molekulare Medizin) for providing the KCC1/3 double KO mice and his reading of this manuscript. We thank Nathaniel Grey (Harvard) for providing the kinase inhibitor library used in this study (NIH LINCS Program grant U54HL127365). This work was also supported by a Harvard-MIT Neuroscience Grant (to KTK/SJE)

    Safety and immunogenicity of rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine against SARS-CoV-2 in healthy adolescents: an open-label, non-randomized, multicenter, phase 1/2, dose-escalation study

    Get PDF
    To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost “Sputnik V” vaccine administered at 1/10 and 1/5 doses to adolescents aged 12–17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants.;Clinical Trial RegistrationClinicalTrials.gov, NCT04954092, LP-007632

    Unraveling cell processes: interference imaging interwoven with data analysis

    No full text
    The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties

    Stimulation of Dectin-1 and Dectin-2 during Parenteral Immunization, but Not Mincle, Induces Secretory IgA in Intestinal Mucosa

    No full text
    Induction of a robust and long-lived mucosal immune response during vaccination is critical to achieve protection against numerous pathogens. However, traditional injected vaccines are generally poor inducers of mucosal immunity. One of the effective strategies to improve vaccine efficacy is incorporation of adjuvant molecules that enhance and polarize adaptive immune reactions. Effects of Syk-coupled lectin receptor agonists as adjuvants to induce mucosal immune reactions during parenteral immunization are not fully studied. We now report that the agonists trehalose-6,6-dibehenate (TDB), curdlan, and furfurman, which stimulate Dectin-1, Dectin-2, and Mincle, respectively, activate transcription factors (NF-κB, NFAT, and AP-1) to various extents in murine RAW 264.7 macrophages, even though similar pathways are activated. The agonists also elicit differential expression of maturation markers in bone marrow-derived dendritic cells, as well as differential cytokine secretion from these cells and from splenic mononuclear cells. In vivo assays also show that agonists of Dectin-1 and Dectin-2, but not Mincle, induce heavy IgA secretion in intestinal mucosa even when delivered parenterally. Strikingly, this effect appears to be formulation-independent. Collectively, the data suggest that adjuvants based on Dectin-1 and Dectin-2 agonists may significantly improve the efficacy of parenteral vaccines by inducing robust local immune reactions in intestinal mucosa
    corecore