34 research outputs found

    Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial

    Get PDF
    Importance: Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD. Objective: To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations. / Interventions: An escalating dose of oral ambroxol to 1.26 g per day. Design, Setting, and Participants: This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture-related complications). All data analyses were performed from November 1 to December 14, 2018. / Main Outcomes and Measures: Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity. / Results: Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was observed. The CSF GCase activity decreased by 19% (0.059 nmol/mL per hour; 95% CI, -0.115 to -0.002; P = .04). The ambroxol therapy was well tolerated, with no serious adverse events. An increase of 50 pg/mL (13%) in the CSF α-synuclein concentration (95% CI, 14-87; P = .01) and an increase of 88 ng/mol (35%) in the CSF GCase protein levels (95% CI, 40-137; P = .002) were observed. Mean (SD) scores on part 3 of the Movement Disorders Society Unified Parkinson Disease Rating Scale decreased (ie, improved) by 6.8 (7.1) points (95% CI, -10.4 to -3.1; P = .001). These changes were observed in patients with and without GBA1 mutations. / Conclusions and Relevance: The study results suggest that ambroxol therapy was safe and well tolerated; CSF penetration and target engagement of ambroxol were achieved, and CSF α-synuclein levels were increased. Placebo-controlled clinical trials are needed to examine whether ambroxol therapy is associated with changes in the natural progression of PD. Trial Registration: ClinicalTrials.gov identifier: NCT02941822; EudraCT identifier: 2015-002571-24

    Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice

    Get PDF
    Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis

    Inventory of current EU paediatric vision and hearing screening programmes

    Get PDF
    Background: We examined the diversity in paediatric vision and hearing screening programmes in Europe. Methods: Themes relevant for comparison of screening programmes were derived from literature and used to compile three questionnaires on vision, hearing and public-health screening. Tests used, professions involved, age and frequency of testing seem to influence sensitivity, specificity and costs most. Questionnaires were sent to ophthalmologists, orthoptists, otolaryngologists and audiologists involved in paediatric screening in all EU fullmember, candidate and associate states. Answers were cross-checked. Results: Thirty-nine countries participated; 35 have a vision screening programme, 33 a nation-wide neonatal hearing screening programme. Visual acuity (VA) is measured in 35 countries, in 71% more than once. First measurement of VA varies from three to seven years of age, but is usually before the age of five. At age three and four picture charts, including Lea Hyvarinen are used most, in children over four Tumbling-E and Snellen. As first hearing screening test otoacoustic emission (OAE) is used most in healthy neonates, and auditory brainstem response (ABR) in premature newborns. The majority of hearing testing programmes are staged; children are referred after one to four abnormal tests. Vision screening is performed mostly by paediatricians, ophthalmologists or nurses. Funding is mostly by health insurance or state. Coverage was reported as >95% in half of countries, but reporting was often not first-hand. Conclusion: Largest differences were found in VA charts used (12), professions involved in vision screening (10), number of hearing screening tests before referral (1-4) and funding sources (8)

    Development of a GC-MS method for the determination of household insecticides in indoor air

    No full text
    This work presents a GC-MS method for the determination of 17 household insecticides and acaricides in indoor air. Air samples were collected with a sampling train which consisted of a glass fibre filter and two polyurethane foam plugs, followed by a high-volume air pump. Filters and plugs were analysed separately. The overall recoveries ranged from 85 to 109% (4-11% RSD). Minimum method detection limits between 0.1 and 5 ng/m3 were determined

    Human biomonitoring of pyrethrum and pyrethroid insecticides used indoors: Determination of the metabolites E-cis/trans-chrysanthemumdicarboxylic acid in human urine by gas chromatography-mass spectrometry with negative chemical ionization

    No full text
    This work describes a gas chromatographic-mass spectrometric method employing negative chemical ionization (NCI) for the determination of E-cis/trans-chrysanthemumdicarboxylic acid (CDCA) in human urine used as a biomarker for the exposure to pyrethrum and/or certain pyrethroids in insecticide formulations applied indoors. Mixed-mode solid phase extraction was utilized for sample cleanup. Extraction recoveries ranged from 92 to 104% (2–9% R.S.D.). The acids were esterified with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) allowing both their gas chromatographic separation and their sensitive mass spectrometric detection under NCI conditions. Detection limits of ca. 0.05 small mu, Greekg/l urine were achieved

    Fast motor axon loss in SMARD1 does not correspond to morphological and functional alterations of the NMJ

    No full text
    Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a childhood motoneuron disease caused by mutations in the gene encoding for IGHMBP2, an ATPase/Helicase. Paralysis of the diaphragm is an early and prominent clinical sign resulting both from denervation and myopathy. In skeletal muscles, muscle atrophy mainly results from loss of motoneuron cell bodies and axonal degeneration. Although it is well known that loss of motoneurons at the lumbar spinal cord is an early event in the pathogenesis of the disease, it is not clear whether the corresponding proximal axons and NMJs are also early affected. In order to address this question, we have investigated the time course of the disease progression at the level of the motoneuron cell body, prox imal axon (ventral root), distal axon (sciatic nerve), NMJ, and muscle fiber in Nmd2J mice, a mouse model for SMARD1. Our results show an early and apparently parallel loss of motoneurons, proximal axons, and NMJs. In affected muscles, however, denervated fibers coexist with NMJs with normal morphology and unaltered neurotransmission. Furthermore, unaffected axons are able to sprout and reinnervate muscle fibers, suggesting selective vulnerability of neurons to Ighmbp2 deficiency. The preservation of the NMJ morphology and neuro transmission in the Nmd2J mouse until motor axon loss takes place, differs from that observed in SMA mouse models in which NMJ impairment is an early and more general phenomenon in affected muscles
    corecore