836 research outputs found

    Microsoft Excel Companion for Business Statistics 3/E

    Get PDF

    DC House Energy Management System

    Get PDF
    In this work, a previously completed proof of concept for an Energy Management System (EMS) for the DC House project has been revised and re-implemented. The implemented design changes will improve the performance and reproducibility of the system. This new design of the EMS replaces the two-separate buck and boost DC-DC converters with a single bidirectional DC-DC converter to reduce components and improve efficiency. Analysis of the bidirectional DC-DC converter shows high efficiency especially at larger load currents. The code of the previous work was updated for smoother operation as well as to accommodate an LCD capable of displaying more information. This project also makes use of the temperature sensing capabilities of the state of charge sensor selected in the previous design to allow for a better understanding of the system’s operation. Additionally, the sensor and all passive components were incorporated into a printed circuit board to create a more reproducible product. Testing of the system demonstrated its ability to successfully direct power between the 48V DC bus and load and the 12V battery

    Systematic Literature Search for MSCR Thesis: Intrathecal Pain Pumps for the Treatment of Neuropathic Pain

    Get PDF
    This search strategy sought to construct an evidence-based position on the use of intrathecal pumps. We identified literature pertaining to the safety and efficacy of intrathecal pumps for the treatment of neuropathic pain. Articles obtained using this search strategy provided the background information for our thesis manuscript, which sought to determine if delivering opioids via the secure, non-tamperable intrathecal pain pump, in combination with other synergistic medications, would show improved pain scores and reduced side effects in patients with chronic neuropathic pain

    Branching Processes and Evolution at the Ends of a Food Chain

    Full text link
    In a critically self--organized model of punctuated equilibrium, boundaries determine peculiar scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous generalization of standard branching processes, extending previous mean field descriptions and yielding ν=1/2\nu=1/2 together with τ=7/4\tau'=7/4, as distribution exponent of avalanches starting from species at the ends of a food chain. For the nearest neighbor chain one obtains numerically τ=1.25±0.01\tau'=1.25 \pm 0.01, and τfirst=1.35±0.01\tau'_{first}=1.35 \pm 0.01 for the first return times of activity, again distinct from bulk exponents.Comment: REVTex file, 12 pages, 2 figures in eps-files uuencoded, psfig.st

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev

    The Roots of Diversity: Below Ground Species Richness and Rooting Distributions in a Tropical Forest Revealed by DNA Barcodes and Inverse Modeling

    Get PDF
    F. Andrew Jones is with the Smithsonian Tropical Research Institute, David L. Erickson is with the Smithsonian Institution, Moises A. Bernal is with the Smithsonian Tropical Research Institute and UT Austin, Eldredge Bermingham is with the Smithsonian Tropical Research Institute, W. John Kress is with the Smithsonian Institution, Edward Allen Herre is with the Smithsonian Tropical Research Institute, Helene C. Muller-Landau is with the Smithsonian Tropical Research Institute, Benjamin L. Turner is with the Smithsonian Tropical Research Institute.Background -- Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions. Methodology/Principal Findings -- DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m2 at the seedling layer and 45 m2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants. Conclusions -- DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.FAJ acknowledges the support of a Tupper postdoctoral fellowship in tropical biology and the National Science Foundation (DEB 0453665). Funding was provided by the Smithsonian Institution Global Earth Observatory, the Smithsonian Tropical Research Institute/Center for Tropical Forest Sciences endowment fund, and the Smithsonian Tropical Research Institute/Frank Levinson fund. We would like to thank Autoridad Nacional del Ambiente and the Smithsonian Tropical Research Institute for processing research permits. We thank S. Hubbell and R. Condit for access to plot data, S. Schnitzer for liana census data (NSF DEB 0613666), and L. Comita and S. Hubbell for access to seedling data (NSF DEB 0075102 and DEB 0823728). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marine Scienc

    IGRT After Prostatectomy: Evaluation of Corrective Shifts and Toxicity Using Online Cone Beam CT vs. Weekly Port Films for Target Localization

    Get PDF
    Purpose/Objective(s): Image guidance (IG) may permit higher radiotherapy (RT) doses (\u3e65 Gy) after radical prostatectomy (RP) without increased toxicity, with improved accuracy and smaller margins. Conebeam (CBCT) allows IGRT with volumetric images. This study evaluated CBCT shifts and toxicity after conformal IGRT, compared to RT with port films. American Society for Therapeutic Radiation Oncology (ASTRO) 52nd Annual Meeting October 31 - November 4, San Diego, C

    Phase I Study of Ipilimumab Combined with Whole Brain Radiation Therapy or Radiosurgery for Melanoma Patients with Brain Metastases

    Get PDF
    Purpose: We performed a phase I study to determine the maximum tolerable dose (MTD) and safety of ipilimumab with stereotactic radiosurgery (SRS) or whole brain radiotherapy (WBRT) in patients with brain metastases (BM) from melanoma. Methods: Based on intracranial (IC) disease burden, patients were treated with WBRT (Arm A) or SRS (Arm B). Ipilimumab starting dose was 3 mg/kg (every 3 weeks, starting on day 3 of WBRT or 2 days after SRS). Ipilimumab was escalated to 10 mg/kg using a two-stage, 3+3 design. The primary endpoint was to determine the MTD of ipilimumab combined with radiotherapy. Secondary endpoints were overall survival (OS), IC and extracranial (EC) control, progression free survival (PFS), and toxicity. This trial is regis- tered with ClinicalTrials.gov, number NCT01703507. Results: Characteristics of the 16 patients enrolled between 2011 and 2014 were: mean age, 60; median BM, 2 (1 to \u3e10); number with EC disease, 13 (81%). Treatment included WBRT (n=5), SRS (n=11), ipilimumab 3mg/kg (n=7), 10 mg/kg (n=9). Median follow-up was 8 months (Arm A) and 10.5 months (Arm B). There were 21 grade 1-2 neuro- toxic effects with no dose-limiting toxicities (DLTs). One patient experienced grade 3 neurotoxicity prior to ipilimumab administration. Ten additional grade 3 toxicities were reported with gastrointestinal (n=5, 31%) as the most common. There were no grade 4/5 toxicities. Median PFS and OS, respectively, in Arm A were 2.5 months and 8 months, and in Arm B were 2.1 months and not reached. Conclusion: Concurrent ipilimumab 10 mg/kg with SRS is safe. The WBRT arm was closed early due to slow accrual, but demonstrated safety with ipilimumab 3 mg/kg. No patient experienced DLT. Larger studies with ipilimumab 10 mg/kg and SRS are warranted
    corecore