379 research outputs found

    Entrainment of the Melatonin Rhythms in Early Postnatal Lambs and Their Mothers

    Full text link
    Although the developing sheep can produce an appropriately timed melatonin rhythm as early as 1 week after birth, it is not known whether the lamb is able to adjust its melatonin rhythm to a change in daylength. The ability of the young lamb to entrain its pattern of melatonin secretion to a new photoperiod was determined in the present study. Eight female lambs and their mothers were raised in long days (LD 16:8) beginning 2 weeks post partum. At 7 weeks of age, the time of lights-off was advanced 8 hr, the short-day photoperiod then being LD 8:16; the time of lights-on remained unchanged. Concentrations of melatonin were measured in blood samples collected hourly on days - 1, 0, 2, 4, 6, and 13 relative to the light change. On day 0, all mothers and daughters had advanced the onset of melatonin secretion by at least 1 hr, and by day 13, 12 of 16 had completely entrained to the new photoperiod. The rate of entrainment among individuals varied; the mean rate for lambs and mothers did not differ. This study provides evidence that the melatonin-rhythm-generating system matures shortly after birth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68290/2/10.1177_074873048900400405.pd

    The Familial Clustering of Age at Menarche in Extended Twin Families

    Get PDF
    The timing of puberty is complex, possibly involving many genetic factors that may interact with environmental influences. Familial resemblance for age at menarche was studied in a sample of 4,995 female twins, 1,296 sisters, 2,946 mothers and 635 female spouses of male twins. They had indicated their age at menarche as part of a larger longitudinal survey. We assessed assortative mating for age at menarche, gene–environment interaction effects and estimated the heritability of individual differences in pubertal timing. There was significant evidence of gene–environment interaction, accounting for 1.5% of the variance. There was no indication of consistent mate assortment on age at menarche. Individual differences in age at menarche are highly heritable, with additive genetic factors explaining at least 70% of the true variation. An additional 1.5% of the variation can be explained by a genotype–environment interaction effect where environmental factors are more important in individuals genetically predisposed for late menarche

    Genome sequencing and transcriptome analyses of the Siberian hamster hypothalamus identify mechanisms for seasonal energy balance

    Get PDF
    We thank the manuscript reviewers for constructive feedback; David G. Hazlerigg, Cristina Saenz de Miera, and Valerie Simonneaux for genome sequence contributions; Nicolas Scrutton and Lindsey Duguid for expert technical assistance; and Michael Jarsulic for technical assistance on the high-performance computing clusters. This project was supported by a project research grant from The British Society for Neuroendocrinology (to T.J.S.); Grants BB/M021629/1 and BB/M001555/1 (to F.J.P.E.) from the Biotechnology and Biological Sciences Research Council, and Grants UL1-TR000430 (to T.J.S. and B.J.P.) and R01-AI067406 (to B.J.P.) from the National Institutes of Health. T.J.S. is funded by The Leverhulme Trust. The Center for Research Informatics was supported by the Biological Sciences Division at the University of Chicago with additional support provided by the Institute for Translational Medicine/Clinical and Translational award (NIH 5UL1TR002389-02) and the University of Chicago Comprehensive Cancer Center Support Grant (NIH Grant P30CA014599). The bioinformatics analysis was performed on high-performance computing clusters at the Center for Research Informatics, Biological Sciences Division. P.B. was funded by the Scottish Government Rural and Environment Science and Analytical Services Division grant to the Rowett Institute.Peer reviewedPublisher PD

    Disrupted seasonal biology impacts health, food security and ecosystems

    Get PDF
    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research

    Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration

    Get PDF
    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin
    • 

    corecore