226 research outputs found

    Precision cutting of glassy polymers: influence of aging on the cutting process

    Get PDF
    ABSTRACT This paper presents the results of an experimental study on the influence of aging on the cutting mechanics of glassy polymers. Polystyrene (PS), a glassy polymer, typically behaves brittle when subjected to a stress, it can be made ductile by rejuvenation. It was expected that PS would show a different cutting behaviour when it would be aged or rejuvenated. To investigate this two different molecular weight PS grades were used. Both aged and (mechanically) rejuvenated samples were made from each grade and cut. Cutting forces, chip morphology and surface quality were investigated. Although the chips showed no differences in brittleness and ductility, the measured cutting forces indicated that there is a difference between aged and rejuvenated PS. Also an interesting difference in cutting forces between the two PS grades was found. Investigation of the surface quality of the PS samples showed that the aged samples have smoother surfaces than the rejuvenated samples. It can be concluded that aging does have effect on the cutting mechanics and the obtained surface roughness

    Search for the electric dipole excitations to the 3s1/2[21+31]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 11^{-} component of the two-phonon [21+31][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure

    Preterm white matter injury : ultrasound diagnosis and classification

    Get PDF
    White matter injury (WMI) is the most frequent form of preterm brain injury. Cranial ultrasound (CUS) remains the preferred modality for initial and sequential neuroimaging in preterm infants, and is reliable for the diagnosis of cystic periventricular leukomalacia. Although magnetic resonance imaging is superior to CUS in detecting the diffuse and more subtle forms of WMI that prevail in very premature infants surviving nowadays, recent improvement in the quality of neonatal CUS imaging has broadened the spectrum of preterm white matter abnormalities that can be detected with this technique. We propose a structured CUS assessment of WMI of prematurity that seeks to account for both cystic and non-cystic changes, as well as signs of white matter loss and impaired brain growth and maturation, at or near term equivalent age. This novel assessment system aims to improve disease description in both routine clinical practice and clinical research. Whether this systematic assessment will improve prediction of outcome in preterm infants with WMI still needs to be evaluated in prospective studies
    corecore