65 research outputs found

    Lack of Effect of Sleep Apnea on Oxidative Stress in Obstructive Sleep Apnea Syndrome (OSAS) Patients

    Get PDF
    PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs) and the biological antioxidant capacity (BAP) in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour) were compared with 24 controls (AHI<5). The levels of d-ROMS were significantly higher (p = 0.005) in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004) in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia

    No evidence of enhanced oxidant production in blood obtained from patients with obstructive sleep apnea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea syndrome (OSAS) is a recognized risk factor for cardiovascular morbidity and mortality, perhaps due to causative exacerbations of systemic oxidative stress. Putative oxidative stress related to numerous episodes of intermittent hypoxia, may be an oxidants chief driving force in OSAS patients.</p> <p>Methods</p> <p>We assessed the resting and n-formyl-methionyl-leucyl-phenylalanine (fMLP)- induced whole blood chemiluminescence (as a measure of oxidant production by polymorphonuclear leukocytes and monocytes), ferric reducing ability of plasma (FRAP) and H<sub>2</sub>O<sub>2 </sub>generation in the whole blood of 27 untreated OSAS patients, 22 subjects after a night of CPAP therapy and 11 controls without OSAS. All of them were matched to age, BMI (body mass index) and smoking habits. All parameters were measured before and after polysomnography-controlled sleep, individual results were obtained as a mean from duplicated experiments.</p> <p>Results</p> <p>No significant differences were distinguished between evening and morning blood chemiluminescence, H<sub>2</sub>O<sub>2 </sub>activity and FRAP within and between all three study groups.</p> <p>For instance patients with untreated OSAS had similar morning and evening resting whole blood chemiluminescence (2.3 +/- 2.2 vs. 2.4 +/- 2.2 [aU·10<sup>-4 </sup>phagocytes]), total light emission after stimulation with fMLP (1790 +/- 1371 vs. 1939 +/- 1532 [aU·s·10<sup>-4 </sup>phagocytes]), as well as FRAP after 3 min. plasma incubation (602 +/- 202 vs. 671 +/- 221 [uM]). Although, in the subgroup of 11 patients with severe OSAS (apnea/hypopnea index 58 +/- 18/h and oxygen desaturation index 55 +/- 19/h), the morning vs. evening resting chemiluminescence and total light emission after stimulation with fMLP observed a propensity to elevate 2.5 +/- 2.7 vs. 1.9 +/- 1.8 [aU·10<sup>-4 </sup>phagocytes] and 1778 +/- 1442 vs. 1503 +/- 1391 [aU·s·10<sup>-4 </sup>phagocytes], respectively, these did not attain statistical significance (p > 0.05).</p> <p>Conclusion</p> <p>Our investigation exposed no evidence in the overproduction of oxidants via circulating phagocytes, once considered a culprit in the oxidative stress of OSAS patients.</p

    Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Get PDF
    Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA

    An Intense and Short-Lasting Burst of Neutrophil Activation Differentiates Early Acute Myocardial Infarction from Systemic Inflammatory Syndromes

    Get PDF
    BACKGROUND: Neutrophils are involved in thrombus formation. We investigated whether specific features of neutrophil activation characterize patients with acute coronary syndromes (ACS) compared to stable angina and to systemic inflammatory diseases. METHODS AND FINDINGS: The myeloperoxidase (MPO) content of circulating neutrophils was determined by flow cytometry in 330 subjects: 69 consecutive patients with acute coronary syndromes (ACS), 69 with chronic stable angina (CSA), 50 with inflammation due to either non-infectious (acute bone fracture), infectious (sepsis) or autoimmune diseases (small and large vessel systemic vasculitis, rheumatoid arthritis). Four patients have also been studied before and after sterile acute injury of the myocardium (septal alcoholization). One hundred thirty-eight healthy donors were studied in parallel. Neutrophils with normal MPO content were 96% in controls, >92% in patients undergoing septal alcoholization, 91% in CSA patients, but only 35 and 30% in unstable angina and AMI (STEMI and NSTEMI) patients, compared to 80%, 75% and 2% of patients with giant cell arteritis, acute bone fracture and severe sepsis. In addition, in 32/33 STEMI and 9/21 NSTEMI patients respectively, 20% and 12% of neutrophils had complete MPO depletion during the first 4 hours after the onset of symptoms, a feature not observed in any other group of patients. MPO depletion was associated with platelet activation, indicated by P-selectin expression, activation and transactivation of leukocyte β2-integrins and formation of platelet neutrophil and -monocyte aggregates. The injection of activated platelets in mice produced transient, P-selectin dependent, complete MPO depletion in about 50% of neutrophils. CONCLUSIONS: ACS are characterized by intense neutrophil activation, like other systemic inflammatory syndromes. In the very early phase of acute myocardial infarction only a subpopulation of neutrophils is massively activated, possibly via platelet-P selectin interactions. This paroxysmal activation could contribute to occlusive thrombosis

    Sleep-disordered breathing-do we have to change gears in heart failure?

    No full text
    The majority of patients with heart failure have sleep-disordered breathing (SDB)-with central (rather than obstructive) sleep apnoea becoming the predominant form in those with more severe disease. Cyclical apnoeas and hypopnoeas are associated with sleep disturbance, hypoxaemia, haemodynamic changes, and sympathetic activation. Such patients have a worse prognosis than those without SDB. Mask-based therapies of positive airway pressure targeted at SDB can improve measures of sleep quality and partially normalise the sleep and respiratory physiology, but recent randomised trials of cardiovascular outcomes in central sleep apnoea have been neutral or suggested the possibility of harm, likely from increased sudden death. Further randomised outcome studies (with cardiovascular mortality and hospitalisation endpoints) are required to determine whether mask-based treatment for SDB is appropriate for patients with chronic systolic heart failure and obstructive sleep apnoea, for those with heart failure with preserved ejection fraction, and for those with decompensated heart failure. New therapies for sleep apnoea-such as implantable phrenic nerve stimulators-also require robust assessment. No longer can the surrogate endpoints of improvement in respiratory and sleep metrics be taken as adequate therapeutic outcome measures in patients with heart failure and sleep apnoea
    • …
    corecore