174 research outputs found
Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance
A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS). The X-ray diffraction (XRD) patterns showed that the typical peak of GO at 9.9o was missing from the nanocomposite’s diffraction pattern, suggesting that the GO had been stripped off of its oxygenous groups after the reaction. We postulated that a nanocomposite film was produced through a layer-by-layer deposition based on field emission scanning electron microscope (FESEM) images. The Raman spectroscopy profiles exhibited that the D/G intensity ratio (ID/IG) of PPy was not altered by the inclusion of GO due to the low concentration of the material used. However, the concentration was sufficient to increase the specific capacitance of the nanocomposite by 20 times compared to that of pure PPy, reflecting a synergistic effect between PPy and GR, as analysed by a three-electrode electrochemical cell. The electrochemical performance of the nanocomposites was affected by varying the deposition parameters such as concentrations of pyrrole and GO, scan rate, deposition time and deposition potential
Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388
© ESO 2020. The original publication is available at https://doi.org/10.1051/0004-6361/202037457.Context. Restarted radio galaxies represent a unique tool for investigating the duty cycle of the jet activity in active galactic nuclei (AGN). The radio galaxy 3C388 has long been claimed to be a peculiar example of an AGN with multi-epoch activity because it shows a very sharp discontinuity in the GHz spectral index distribution of its lobes. Aims. We present here for the first time a spatially resolved study of the radio spectrum of 3C388 down to MHz frequencies aimed at investigating the radiative age of the source and constraining its duty cycle. Methods. We used new low-frequency observations at 144 MHz performed with the Low Frequency Array and at 350 MHz performed with the Very Large Array that we combined with archival data at higher frequencies (614, 1400, and 4850 MHz). Results. We find that the spectral indices in the lower frequency range, 144-614 MHz, have flatter values (αlow ∼0.55-1.14) than those observed in the higher frequency range, 1400-4850 MHz, (αhigh ∼0.75-1.57), but they follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations occurs, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, which might be related to the two different outbursts. Conclusions. Using single-injection radiative models, we compute that the total source age is ≲ 80 Myr and that the duty cycle is about ton/ttot ∼ 60%, which is enough to prevent the intracluster medium from cooling, according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, multi-frequency surveys performed with new-generation instruments will soon allow us to investigate whether more sources with the same characteristics exist.Peer reviewe
Spectral Topography of the Subthalamic Nucleus to Inform Next-Generation Deep Brain Stimulation.
BACKGROUND
The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
OBJECTIVES
The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
METHODS
STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS.
RESULTS
The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS.
CONCLUSIONS
The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
VizieR Online Data Catalog: 3C388 145, 392, 614, 1400 and 4850MHz images (Brienza+, 2020)
We used a recent dataset obtained on June 26th, 2019, as part of the LOFAR Two-metre Sky Survey (LoTSS, see Shimwell et al., 2019A&A...622A...1S, Cat. J/A+A/622/A1). We observed the source with the Very Large Array (VLA) in A configuration on July 28th 2015 using the P-band receiver centered at 350MHz. We reprocessed the data used by Roettiger et al. (1994ApJ...421L..23R) at 1400MHz and 4850MHz. The data consists of observations in B array at 1400MHz and in C array at 4850MHz. The target was observed for 7 hours at 1400MHz and for 5 hours at 4850MHz. The target was observed with the legacy Giant Metrewave Radio Telescope (GMRT) at 614MHz and 240MHz in dual frequency mode and data were published in Lal et al. (2008MNRAS.390.1105L). The observations were performed on July 29th and 30th, 2005. 3C388 was observed by Chandra on February 9th and 29th, 2004 with the ACIS-I detector (obs ID 4756 and 5295, respectively) and the data were published by Kraft et al. (2006ApJ...639..753K). (2 data files)
Characterization of conductive polyprrole coated wool yarns
Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn. <br /
Orally Administered P22 Phage Tailspike Protein Reduces Salmonella Colonization in Chickens: Prospects of a Novel Therapy against Bacterial Infections
One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI) tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps). Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in humans
Study of Fe/C and FeMo/C hydrodesulfurization catalysts: Preparational aspects and metal support interaction
Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface
We provide a new insight that the sulphur-depleted MoS2 surface can store hydrogen gas at room temperature. Our findings reveal that the sulphur-vacancy defects preferentially serve as active sites for both hydrogen chemisorption and physisorption. Unexpectedly the sulphur vacancy instantly dissociates the H-2 molecules and strongly binds the split hydrogen at the exposed Mo atoms. Thereon the additional H-2 molecule is adsorbed with enabling more hydrogen physisorption on the top sites around the sulphur vacancy. Furthermore, the increase of the sulphur vacancy on the MoS2 surface further activates the dissociative hydrogen chemisorption than the H-2 physisorption
Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review
- …
