79 research outputs found

    Meeting reports: Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies

    Get PDF
    Understanding the complexity of human–nature interactions is central to the quest for both human well-being and global sustainability. To build an understanding of these interactions, scientists, planners, resource managers, policymakers, and communities increasingly are collaborating across wide-ranging disciplines and knowledge domains. Scientists and others are generating new integrated knowledge on top of their requisite specialized knowledge to understand complex systems in order to solve pressing environmental and social problems (e.g., Carpenter et al. 2009). One approach to this sort of integration, bringing together detailed knowledge of various disciplines (e.g., social, economic, biological, and geophysical), has become known as the study of Coupled Human and Natural Systems, or CHANS (Liu et al. 2007a, b). In 2007 a formal standing program in Dynamics of Coupled Natural and Human Systems was created by the U.S. National Science Foundation. Recently, the program supported the launch of an International Network of Research on Coupled Human and Natural Systems (CHANS-Net.org). A major kick-off event of the network was a symposium on Complexity in Human–Nature Interactions across Landscapes, which brought together leading CHANS scientists at the 2009 meeting of the U.S. Regional Association of the International Association for Landscape Ecology in Snowbird, Utah. The symposium highlighted original and innovative research emphasizing reciprocal interactions between human and natural systems at multiple spatial, temporal, and organizational scales. The presentations can be found at ‹http://chans- net.org/Symposium_2009.aspx›. The symposium was accompanied by a workshop on Challenges and Opportunities in CHANS Research. This article provides an overview of the CHANS approach, outlines the primary challenges facing the CHANS research community, and discusses potential strategies to meet these challenges, based upon the presentations and discussions among participants at the Snowbird meeting

    Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16

    Get PDF
    Serotonin reuptake inhibitor (SRI) antidepressants such as fluoxetine (Prozac), promote hippocampal neurogenesis. They also increase the levels of the bcl-2 protein, whose overexpression in transgenic mice enhances adult hippocampal neurogenesis. However, the mechanisms underlying SRI-mediated neurogenesis are unclear. Recently, we identified the microRNA miR-16 as an important effector of SRI antidepressant action in serotonergic raphe and noradrenergic locus coeruleus (LC). We show here that miR-16 mediates adult neurogenesis in the mouse hippocampus. Fluoxetine, acting on serotonergic raphe neurons, decreases the amount of miR-16 in the hippocampus, which in turn increases the levels of the serotonin transporter (SERT), the target of SRI, and that of bcl-2 and the number of cells positive for Doublecortin, a marker of neuronal maturation. Neutralization of miR-16 in the hippocampus further exerts an antidepressant-like effect in behavioral tests. The fluoxetine-induced hippocampal response is relayed, in part, by the neurotrophic factor S100β, secreted by raphe and acting via the LC. Fluoxetine-exposed serotonergic neurons also secrete brain-derived neurotrophic factor, Wnt2 and 15-Deoxy-delta12,14-prostaglandin J2. These molecules are unable to mimic on their own the action of fluoxetine and we show that they act synergistically to regulate miR-16 at the hippocampus. Of note, these signaling molecules are increased in the cerebrospinal fluid of depressed patients upon fluoxetine treatment. Thus, our results demonstrate that miR-16 mediates the action of fluoxetine by acting as a micromanager of hippocampal neurogenesis. They further clarify the signals and the pathways involved in the hippocampal response to fluoxetine, which may help refine therapeutic strategies to alleviate depressive disorders

    Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exact cause of schizophrenia is not known, although several aetiological theories have been proposed for the disease, including developmental or neurodegenerative processes, neurotransmitter abnormalities, viral infection and immune dysfunction or autoimmune mechanisms. Growing evidence suggests that specific cytokines and chemokines play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune and behavioural changes. A relationship between inflammation and schizophrenia was supported by abnormal cytokines production, abnormal concentrations of cytokines and cytokine receptors in the blood and cerebrospinal fluid in schizophrenia. Since the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation we aimed to determined whether spontaneous or LPS-induced peripheral blood mononuclear cell chemokines and cytokines production is dysregulated in schizophrenic patients compared to healthy subjects. We enrolled 51 untreated first-episode schizophrenics (SC) and 40 healthy subjects (HC) and the levels of MCP-1, MIP-1α, IL-8, IL-18, IFN-γ and RANTES were determined by Elisa method in cell-free supernatants of PBMC cultures.</p> <p>Results</p> <p>In the simultaneous quantification we found significantly higher levels of constitutively and LPS-induced MCP-1, MIP-1α, IL-8 and IL-18, and lower RANTES and IFNγ levels released by PBMC of SC patients compared with HC. In ten SC patients receiving therapy with risperidone, olanzapine or clozapine basal and LPS-induced production of RANTES and IL-18 was increased, while both basal and LPS-induced MCP-1 production was decreased. No statistically significant differences were detected in serum levels after therapy.</p> <p>Conclusion</p> <p>The observation that in schizophrenic patients the PBMC production of selected chemo-cytokines is dysregulated reinforces the hypothesis that the peripheral cyto-chemokine network is involved in the pathophysiology of schizophrenia. These preliminary, but promising data are supportive of the application of wider profiling approaches to the identification of biomarker as diagnostic tools for the analysis of psychiatric diseases.</p

    Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype

    Get PDF
    Low-grade peripheral inflammation is often present in psychotic patients. Toll-like receptors (TLRs) are pattern-recognition molecules that initiate inflammation. Our objective was to investigate the peripheral TLR activity in psychosis. Forty schizophrenia patients, twenty bipolar patients and forty healthy controls (HC) were recruited. Donated whole blood was cultured with TLR agonists for 24 h. Cell supernatants were analysed using a multiplex enzyme-linked immunosorbent assay approach to measure IL-1β, IL-6, IL-8 and tumour necrosis factor-α (TNFα). Plasma was analysed for cytokines, cortisol and acute phase proteins. Here, we show that selective TLR agonist-induced cytokine (IL-1β, IL-6, IL-8 and TNFα) release is enhanced in stimulated whole blood from schizophrenia and bipolar patients compared with HC. An exaggerated release of IL-1β, IL-6 and TNFα following treatment with the TLR2 agonist HKLM was detected in both disorders compared with controls. Enhanced TLR4-induced increases in IL-1β for both disorders coupled with TNFα increases for bipolar patients were observed. TLR8-induced increases in IL-1β for both disorders as well as IL-6 and TNFα increases for bipolar patients were detected. TLR9-induced increases in IL-8 for schizophrenia patients were also observed. No differences in TLR1, TLR3, TLR5, TLR6 or TLR7 activity were detected. Plasma levels of IL-6 were significantly elevated in bipolar patients while TNFα levels were significantly elevated in schizophrenia patients compared with controls. Plasma acute phase proteins were significantly elevated in bipolar patients. These data demonstrate that specific alterations in TLR agonist-mediated cytokine release contribute to the evidence of immune dysfunction in psychotic disorders

    Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients

    Get PDF
    Aging and neurodegenerative disease predispose to delirium and are both associated with increased activity of the innate immune system resulting in an imbalance between pro- and anti-inflammatory mediators in the brain. We examined whether hip fracture patients who develop postoperative delirium have altered levels of inflammatory mediators in cerebrospinal fluid (CSF) prior to surgery. Patients were 75 years and older and admitted for surgical repair of an acute hip fracture. CSF samples were collected preoperatively. In an exploratory study, we measured 42 cytokines and chemokines by multiplex analysis. We compared CSF levels between patients with and without postoperative delirium and examined the association between CSF cytokine levels and delirium severity. Delirium was diagnosed with the Confusion Assessment Method; severity of delirium was measured with the Delirium Rating Scale Revised-98. Mann-Whitney U tests or Student t-tests were used for between-group comparisons and the Spearman correlation coefficient was used for correlation analyses. Sixty-one patients were included, of whom 23 patients (37.7%) developed postsurgical delirium. Concentrations of Fms-like tyrosine kinase-3 (P=0.021), Interleukin-1 receptor antagonist (P=0.032) and Interleukin-6 (P=0.005) were significantly lower in patients who developed delirium postoperatively. Our findings fit the hypothesis that delirium after surgery results from a dysfunctional neuroinflammatory response: stressing the role of reduced levels of anti-inflammatory mediators in this process. The Effect of Taurine on Morbidity and Mortality in the Elderly Hip Fracture Patient.Registration number: NCT00497978. Local ethical protocol number: NL16222.094.0
    corecore