17,190 research outputs found
Reference list for stability theory in ordinary differential equations
Reference list for stability and control theory in ordinary differential equation
A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1
Eclipsing planetary systems give us an important window on extrasolar planet
atmospheres. By measuring the depth of the secondary eclipse, when the planet
moves behind the star, we can estimate the strength of the thermal emission
from the day side of the planet. Attaining a ground-based detection of one of
these eclipses has proven to be a significant challenge, as time-dependent
variations in instrument throughput and atmospheric seeing and absorption
overwhelm the small signal of the eclipse at infrared wavelengths. We gathered
a series of simultaneous L grism spectra of the transiting planet system TrES-1
and a nearby comparison star of comparable brightness, allowing us to correct
for these effects in principle. Combining the data from two eclipses, we
demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to
the stellar flux. This approaches the sensitivity required to detect the
planetary emission, which theoretical models predict should lie between
0.05-0.1% of the stellar flux in our 2.9-4.3 micron bandpass. We explore the
factors that ultimately limit the precision of this technique, and discuss
potential avenues for future improvements.Comment: 10 pages, 1 table, four figures, accepted for publication in PAS
What is Causing This Man\u27s Rectal Pain and Urinary Retention?
Case: A 23-year-old man presented to an urgent care office with a 2-week history of rectal pain and scant rectal bleeding. In the few days leading up to his presentation, he also had a fever of 101° F (38.3° C), inguinal lymphadenopathy, and urinary retention
Coronal Structure and Abundances in Young Fast Rotators
AB Dor, Speedy Mic and Rst137B are in their early post-T Tauri evolutionary
phase (<100Myr), at the age of fastest rotation in the life of late-type stars.
They straddle the coronal saturation-supersaturation boundary first defined by
young stars in open clusters. High resolution Chandra X-ray spectra have been
analysed to study their coronal properties as a function of coronal activity
parameters Rossby number,  and a coronal temperature index. Plasma
emission measure distributions as a function of temperature show broad peaks at
T~10e7K. Differences between stars suggest that as supersaturation is reached
the DEM slope below the temperature of peak DEM becomes shallower, while the
DEM drop-off above this temperature becomes more pronounced. A larger sample
comprising our three targets and 22 active stars studied in the recent
literature reveals a general increase of plasma at T>10e7 toward the
saturated-supersaturated boundary but a decline beyond this among
supersaturated stars. All three of the stars studied in detail here show lower
coronal abundances of the low FIP elements Mg, Si and Fe, relative to the high
FIP elements S, O and Ne, as compared to the solar mixture. The coronal Fe
abundances of the stellar sample are inversely correlated with Lx/Lbol,
declining slowly with rising Lx/Lbol, but with a much more sharp decline at
Lx/Lbol>3x10e-4. For dwarfs the Fe abundance is also well-correlated with
Rossby number. The coronal O/Fe ratios for dwarfs show a clear increase with
decreasing Rossby number, apparently reaching saturation at [O/Fe]=0.5 at the
coronal supersaturation boundary. Similar increases in O/Fe with increasing
coronal temperature and  are seen.Comment: 22 pages, 8 figures, 6 tables. Accepted by Ap
3.8-Micron Photometry During the Secondary Eclipse of the Extrasolar Planet HD 209458b
We report infrared photometry of the extrasolar planet HD 209458b during the
time of secondary eclipse (planet passing behind the star). Observations were
acquired during two secondary eclipses at the NASA Infrared Telescope Facility
(IRTF) in September 2003. We used a circular variable filter (1.5-percent
bandpass) centered at 3.8 microns to isolate the predicted flux peak of the
planet at this wavelength. Residual telluric absorption and instrument
variations were removed by offsetting the telescope to nearby bright comparison
stars at a high temporal cadence. Our results give a secondary eclipse depth of
0.0013 +/- 0.0011, not yet sufficient precision to detect the eclipse, whose
expected depth is approximately 0.002 - 0.003. We here elucidate the current
observational limitations to this technique, and discuss the approach needed to
achieve detections of hot Jupiter secondary eclipses at 3.8 microns from the
ground.Comment: 5 pages, 5 figures, in press for MNRA
Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways.
Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level
Turbulence in Three-Dimensional Simulations of Magnetopause Reconnection
We present detailed analysis of the turbulence observed in three-dimensional
particle-in-cell simulations of magnetic reconnection at the magnetopause. The
parameters are representative of an electron diffusion region encounter of the
Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop
around both the magnetic X line and separatrices, is electromagnetic in nature,
is characterized by a wave vector  given by
 with  the electron Larmor radius,
and appears to have the ion pressure gradient as its source of free energy.
Taken together, these results suggest the instability is a variant of the lower
hybrid drift instability. The turbulence produces electric field fluctuations
in the out-of-plane direction (the direction of the reconnection electric
field) with an amplitude of around ~mV/m, which is much greater than
the reconnection electric field of around ~mV/m. Such large values of the
out-of-plane electric field have been identified in the MMS data. The
turbulence in the simulations controls the scale lengths of the density profile
and current layers in asymmetric reconnection, driving them closer to
 than the  or  scalings seen in 2-D
reconnection simulations, and produces significant anomalous resistivity and
viscosity in the electron diffusion region.Comment: 11 pages, 10 figure
Infrared Observations During the Secondary Eclipse of HD 209458 b II. Strong Limits on the Infrared Spectrum Near 2.2 Microns
We report observations of the transiting extrasolar planet, HD 209458 b,
designed to detect the secondary eclipse. We employ the method of `occultation
spectroscopy', which searches in combined light (star and planet) for the
disappearance and reappearance of weak infrared spectral features due to the
planet as it passes behind the star and reappears. Our observations cover two
predicted secondary eclipse events, and we obtained 1036 individual spectra of
the HD 209458 system using the SpeX instrument at the NASA IRTF in September
2001. Our spectra extend from 1.9 to 4.2 microns with a spectral resolution of
1500. We have searched for a continuum peak near 2.2 microns (caused by CO and
water absorption bands), as predicted by some models of the planetary
atmosphere to be approximately 6E-4 of the stellar flux, but no such peak is
detected at a level of about 3E-4 of the stellar flux. Our results represent
the strongest limits on the infrared spectrum of the planet to date and carry
significant implications for understanding the planetary atmosphere. In
particular, some models that assume the stellar irradiation is re-radiated
entirely on the sub-stellar hemisphere predict a flux peak inconsistent with
our observations. Several physical mechanisms can improve agreement with our
observations, including the re-distribution of heat by global circulation, a
nearly isothermal atmosphere, and/or the presence of a high cloud.Comment: Accepted to the Astrophysical Journal 17 pages, 6 figure
- …
