744 research outputs found

    Environmental Law--The National Environmental Policy Act

    Get PDF

    Invariant Reconstruction of Curves and Surfaces with Discontinuities with Applications in Computer Vision

    Get PDF
    The reconstruction of curves and surfaces from sparse data is an important task in many applications. In computer vision problems the reconstructed curves and surfaces generally represent some physical property of a real object in a scene. For instance, the sparse data that is collected may represent locations along the boundary between an object and a background. It may be desirable to reconstruct the complete boundary from this sparse data. Since the curves and surfaces represent physical properties, the characteristics of the reconstruction process differs from straight forward fitting of smooth curves and surfaces to a set of data in two important areas. First, since the collected data is represented in an arbitrarily chosen coordinate system, the reconstruction process should be invariant to the choice of the coordinate system (except for the transformation between the two coordinate systems). Secondly, in many reconstruction applications the curve or surface that is being represented may be discontinuous. For example in the object recognition problem if the object is a box there is a discontinuity in the boundary curve at the comer of the box. The reconstruction problem will be cast as an ill-posed inverse problem which must be stabilized using a priori information relative to the constraint formation. Tikhonov regularization is used to form a well posed mathematical problem statement and conditions for an invariant reconstruction are given. In the case where coordinate system invariance is incorporated into the problem, the resulting functional minimization problems are shown to be nonconvex. To form a valid convex approximation to the invariant functional minimization problem a two step algorithm is proposed. The first step forms an approximation to the curve (surface) which is piecewise linear (planar). This approximation is used to estimate curve (surface) characteristics which are then used to form an approximation of the nonconvex functional with a convex functional. Several example applications in computer vision for which the invariant property is important are presented to demonstrate the effectiveness of the algorithms. To incorporate the fact that the curves and surfaces may have discontinuities the minimizing functional is modified. An important property of the resulting functional minimization problems is that convexity is maintained. Therefore, the computational complexity of the resulting algorithms are not significantly increased. Examples are provided to demonstrate the characteristics of the algorithm

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    A low complexity method for detection of text area in natural images

    Get PDF
    We propose a low complexity method for segmentation of text regions in natural images. This algorithm is designed for mobile applications (e.g. unmanned or hand-held devices) in which computational and energy resources are limited. No prior assumption is made regarding the text size, font, language, character set or the camera angle. However, the text is assumed to be located on a piecewise homogeneous background with a contrasting color. We have deployed our method on a Nokia N800 Internet tablet as part of a system for automatic detection and translation of outdoor signs. Our experiments show that the 0.3 megapixel images taken by the phone camera can be accurately segmented within the device in a fraction of a second

    Manipulation and generation of synthetic satellite images using deep learning models

    Get PDF
    Generation and manipulation of digital images based on deep learning (DL) are receiving increasing attention for both benign and malevolent uses. As the importance of satellite imagery is increasing, DL has started being used also for the generation of synthetic satellite images. However, the direct use of techniques developed for computer vision applications is not possible, due to the different nature of satellite images. The goal of our work is to describe a number of methods to generate manipulated and synthetic satellite images. To be specific, we focus on two different types of manipulations: full image modification and local splicing. In the former case, we rely on generative adversarial networks commonly used for style transfer applications, adapting them to implement two different kinds of transfer: (i) land cover transfer, aiming at modifying the image content from vegetation to barren and vice versa and (ii) season transfer, aiming at modifying the image content from winter to summer and vice versa. With regard to local splicing, we present two different architectures. The first one uses image generative pretrained transformer and is trained on pixel sequences in order to predict pixels in semantically consistent regions identified using watershed segmentation. The second technique uses a vision transformer operating on image patches rather than on a pixel by pixel basis. We use the trained vision transformer to generate synthetic image segments and splice them into a selected region of the to-be-manipulated image. All the proposed methods generate highly realistic, synthetic, and satellite images. Among the possible applications of the proposed techniques, we mention the generation of proper datasets for the evaluation and training of tools for the analysis of satellite images. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed
    • …
    corecore