343 research outputs found

    Determinants and implications of the growing scale of livestock farms in four fast-growing developing countries:

    Get PDF
    "The rapid growth in consumer demand for livestock offers an opportunity to reduce poverty among smallholder livestock farmers in the developing world. These farmers' opportunity may be threatened, however, by competition from larger-scale farms. This report assesses the potential threat, examining various forms of livestock production in Brazil, India, the Philippines, and Thailand. Findings show that the competitiveness of smallholder farms depends on the opportunity cost of family labor and farmers' ability to overcome barriers to the acquisition of production- and market-related information and assets. Pro-poor livestock development depends, therefore, on the strengthening of institutions that will help smallholders overcome the disproportionately high transaction costs in securing quality inputs and obtaining market recognition for quality outputs. These and other findings make this report a useful guide for researchers and others concerned with the opportunities and risks of smallholder livestock farming." from Authors' SummaryDeveloping countries, Economic aspects, Industrialization, Profit efficiency, Environmental externalities, Smallholder competitiveness, Livestock productivity, Livestock Industrialization, Scaling up,

    Clinical relevance of DNA ploidy and proliferative activity in childhood rhabdomyosarcoma: a retrospective analysis of patients enrolled onto the Italian Cooperative Rhabdomyosarcoma Study RMS88.

    Get PDF
    Abstract: Purpose: Evaluation of the possible clinical relevance of DNA ploidy and proliferative activity assessed as S-phase fraction (SPF) in childhood rhabdomyosarcoma (RMS). Patients and Methods: We conducted a retrospective study on 59 RMS patients enrolled onto the ICS-RMS88 protocol (seven botryoid, 35 embryonal, and 17 alveolar RMS), for which formalin-fixed paraffin-embedded (FFPE) tissue was available. Nuclear suspensions for cytometric investigation were obtained using a mechanical disaggregation, Tumors were distinguished according to their DNA index (DI) value as follows: diploid (0.9 < DI < 1.1), hyperdiploid (1.1 less than or equal to DI < 1.8 or DI greater than or equal to 2.2), and tetraploid (1.8 less than or equal to DI < 2.2); for analysis of SPF, a cutoff value of 14% was used. Results: DNA histograms were diploid in 19 (33%) cases, hyperdiploid in 29 (49%), and tetraploid in 10 (32%). One patient showed both a hyperdiploid and a tetraploid peek. The 5-year overall survival (OS) rate by ploidy status was 73% in hyperdiploid patients as compared with 33% and 25% in diploid and tetraploid patients, respectively (P = .0012), A striking difference emerged when the 5-year OS for the combined diploid and tetraploid RMS groups was compared with survival of the hyperdiploid RMS group: 30% versus 73%, respectively (P = .0006). In addition, the SPF was prognostically relevant: 5-year OS by SPF less than or greater than 14% was 70% and 36%, respectively (P = .009). Multivariate analysis confirmed the importance of DNA content (P = .0006) and SPF (P = .034) in predicting survival. Conclusion: These findings confirm that ploidy and SPF are important new prognostic factors that are able to identify selected groups of patients at high risk of treatment failure, even if the tumor's presentation is favorable according to standard criteria. (C) 1997 by American Society of Clinical Oncology

    Tricritical Points in the Sherrington-Kirkpatrick Model in the Presence of Discrete Random Fields

    Full text link
    The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic field following a trimodal (three-peak) distribution. The model is studied through the replica method and phase diagrams are obtained within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present first-order phase transitions, as well as tricritical points at finite temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified that the first-order phase transitions are directly related to the dilution in the fields (represented by p0p_{0}). The ferromagnetic boundary at zero temperature also exhibits an interesting behavior: for 0<p0<p00.308560<p_{0}<p_{0}^{*} \approx 0.30856, a single tricritical point occurs, whereas if p0>p0p_{0}>p_{0}^{*} the critical frontier is completely continuous; however, for p0=p0p_{0}=p_{0}^{*}, a fourth-order critical point appears. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus temperature is shown to depend on the weight p0p_{0}.Comment: 23pages, 7 ps figure

    On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm

    Get PDF
    N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al

    Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions

    Full text link
    We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group that is (i) simple, and (ii) acts irreducibly on all the vector fields of the theory, including the ``graviphoton''. Restricting ourselves to the theories that originate from five dimensions via dimensional reduction, we find that the generic Jordan family of MESGTs with the scalar manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four dimensions with the unifying global symmetry group SO(2,n). Of these theories only one can be gauged so as to obtain a unified YMESGT with the gauge group SO(2,1). Three of the four magical supergravity theories defined by simple Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions. Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family and the theories whose scalar manifolds are homogeneous but not symmetric do not lead to unified MESGTs in four dimensions. The three infinite families of unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras, whose scalar manifolds are non-homogeneous, do not lead directly to unified MESGTs in four dimensions under dimensional reduction. However, since their manifolds are non-homogeneous we are not able to completely rule out the existence of symplectic sections in which these theories become unified in four dimensions.Comment: 47 pages; latex fil

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within \sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society

    Anarchy and Leptogenesis

    Full text link
    We study if leptogenesis works successfully together with the neutrino mass anarchy hypothesis. We find that the predicted neutrino mass spectrum is sensitive to the reheating temperature or the inflaton mass, while the distributions of the neutrino mixing angles and CP violation phases remain intact as determined by the invariant Haar measure of U(3). In the case of thermal leptogenesis, the light neutrino mass distribution agrees well with the observations if the reheating temperature is O(10^{9-11}) GeV. The mass spectrum of the right-handed neutrinos and the neutrino Yukawa matrix exhibit a certain pattern, as a result of the competition between random matrices with elements of order unity and the wash-out effect. Non-thermal leptogenesis is consistent with observation only if the inflaton mass is larger than or comparable to the typical right-handed neutrino mass scale. Cosmological implications are discussed in connection with the 125GeV Higgs boson mass.Comment: 29 pages, 6 figures. v2: figures and references added. v3: published in JHE

    Cosmological evolution of interacting dark energy in Lorentz violation

    Full text link
    The cosmological evolution of an interacting scalar field model in which the scalar field interacts with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling βˉ\bar{\beta}. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar field dark energy exist and baryons are sub dominant. Secondly, the model also allows the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through βˉ\bar{\beta}. In particular, we consider a simple case where βˉ\bar{\beta} has a quadratic form and has a good agreement with the modified Λ\LambdaCDM and quintessence models. Finally, we also calculate the first post--Newtonian parameters for our model.Comment: 14 pages, published versio
    corecore