1,840 research outputs found
Noise sensitivity of an atomic velocity sensor
We use Bloch oscillations to accelerate coherently Rubidium atoms. The
variation of the velocity induced by this acceleration is an integer number
times the recoil velocity due to the absorption of one photon. The measurement
of the velocity variation is achieved using two velocity selective Raman
pi-pulses: the first pulse transfers atoms from the hyperfine state 5S1/2 |F=2,
mF=0> to 5S1/2, |F=1, mF = 0> into a narrow velocity class. After the
acceleration of this selected atomic slice, we apply the second Raman pulse to
bring the resonant atoms back to the initial state 5S1/2, |F=2, mF = 0>. The
populations in (F=1 and F=2) are measured separately by using a one-dimensional
time-of-flight technique. To plot the final velocity distribution we repeat
this procedure by scanning the Raman beam frequency of the second pulse. This
two pi-pulses system constitutes then a velocity sensor. Any noise in the
relative phase shift of the Raman beams induces an error in the measured
velocity. In this paper we present a theoretical and an experimental analysis
of this velocity sensor, which take into account the phase fluctuations during
the Raman pulses
Predicting Fracture in the Proximal Humerus using Phase Field Models
Proximal humerus impacted fractures are of clinical concern in the elderly
population. Prediction of such fractures by CT-based finite element methods
encounters several major obstacles such as heterogeneous mechanical properties
and fracture due to compressive strains. We herein propose to investigate a
variation of the phase field method (PFM) embedded into the finite cell method
(FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The
force-strain response, failure loads and the fracture path are compared to
experimental observations for validation purposes. The PFM (by means of the
regularization parameter ) is first calibrated by one experiment and
thereafter used for the prediction of the mechanical response of two other
human fresh frozen humeri. All humeri are fractured at the surgical neck and
strains are monitored by Digital Image Correlation (DIC). Experimental strains
in the elastic regime are reproduced with good agreement (),
similarly to the validated finite element method [9]. The failure pattern and
fracture evolution at the surgical neck predicted by the PFM mimic extremely
well the experimental observations for all three humeri. The maximum relative
error in the computed failure loads is . To the best of our knowledge
this is the first method that can predict well the experimental compressive
failure pattern as well as the force-strain relationship in proximal humerus
fractures
A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202)
PD-L1 inhibitor; Anal cancer; RetifanlimabInhibidor de PD-L1; Cáncer anal; RetifanlimabInhibidor de PD-L1; Cà ncer anal; RetifanlimabBackground
Locally advanced or metastatic squamous carcinoma of the anal canal (SCAC) has poor prognosis following platinum-based chemotherapy. Retifanlimab (INCMGA00012), a humanized monoclonal antibody targeting programmed death protein-1 (PD-1), demonstrated clinical activity across a range of solid tumors in clinical trials. We present results from POD1UM-202 (NCT03597295), an open-label, single-arm, multicenter, phase II study evaluating retifanlimab in patients with previously treated advanced or metastatic SCAC.
Patients and methods
Patients ≥18 years of age had measurable disease and had progressed following, or were ineligible for, platinum-based therapy. Retifanlimab 500 mg was administered intravenously every 4 weeks. The primary endpoint was overall response rate (ORR) by independent central review. Secondary endpoints were duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and safety.
Results
Overall, 94 patients were enrolled. At a median follow-up of 7.1 months (range, 0.9-19.4 months), ORR was 13.8% [95% confidence interval (CI) 7.6% to 22.5%], with one complete response (1.1%) and 12 partial responses (12.8%). Responses were observed regardless of human immunodeficiency virus or human papillomavirus status, programmed death ligand 1 (PD-L1) expression, or liver metastases. Stable disease was observed in 33 patients (35.1%) for a DCR of 48.9% (95% CI 38.5% to 59.5%). Median DOR was 9.5 months (range, 5.6 months-not estimable). Median (95% CI) PFS and OS were 2.3 (1.9-3.6) and 10.1 (7.9-not estimable) months, respectively. Retifanlimab safety in this population was consistent with previous experience for the PD-(L)1 inhibitor class.
Conclusions
Retifanlimab demonstrated clinically meaningful and durable antitumor activity, and an acceptable safety profile in patients with previously treated locally advanced or metastatic SCAC who have progressed on or are intolerant to platinum-based chemotherapy.This work was supported by Incyte Corporation (Wilmington, DE, USA) (no grant number)
Dipole and Bloch oscillations of cold atoms in a parabolic lattice
The paper studies the dynamics of a Bose-Einstein condensate loaded into a 1D
parabolic optical lattice, and excited by a sudden shift of the lattice center.
Depending on the magnitude of the initial shift, the condensate undergoes
either dipole or Bloch oscillations. The effects of dephasing and of atom-atom
interactions on these oscillations are discussed.Comment: 3 pages, to appear in proceeding of LPHYS'05 conference (July 4-8,
2005, Kyoto, Japan
The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: Mechanistic modeling and application to progesterone
A quasi-equilibrium mass transport analysis has been developed to quantitatively explain the solubility–permeability interplay that exists when using cyclodextrins as pharmaceutical solubilizers. The model considers the effects of cyclodextrins on the membrane permeability ( P m ) as well as the unstirred water layer (UWL) permeability ( P aq ), to predict the overall effective permeability ( P eff ) dependence on cyclodextrin concentration ( C CD ). The analysis reveals that: (1) UWL permeability markedly increases with increasing C CD since the effective UWL thickness quickly decreases with increasing C CD ; (2) membrane permeability decreases with increasing C CD , as a result of the decrease in the free fraction of drug; and (3) since P aq increases and P m decreases with increasing C CD , the UWL is effectively eliminated and the overall P eff tends toward membrane control, that is, P eff  ≈  P m above a critical C CD . Application of this transport model enabled excellent quantitative prediction of progesterone P eff as a function of HPΒCD concentrations in PAMPA assay, Caco-2 transepithelial studies, and in situ rat jejunal-perfusion model. This work demonstrates that when using cyclodextrins as pharmaceutical solubilizers, a trade-off exists between solubility increase and permeability decrease that must not be overlooked; the transport model presented here can aid in striking the appropriate solubility–permeability balance in order to achieve optimal overall absorption. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2739–2749, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71376/1/22033_ftp.pd
Analyse des délais de prise en charge des cancers thoraciques : étude prospective
RésuméIntroductionLe cancer broncho-pulmonaire est la première cause de décès par cancer en France. Son diagnostic est le plus souvent tardif, alors que le délai entre le début des symptômes et la prise en charge est considéré comme un facteur aggravant.Matériel et méthodesNotre étude prospective a recueilli les différentes dates de prise en charge de 139 patients consécutifs bénéficiant d’un traitement primaire pour un cancer thoracique dans notre hôpital entre novembre 2008 et mai 2009. L’objectif de cette étude était d’évaluer différents délais de prise en charge des patients porteurs d’un cancer thoracique quelle que soit sa prise en charge thérapeutique (médicale ou chirurgicale) et de déterminer la cause de ces délais.RésultatsLe délai médian entre la première imagerie pathologique et le traitement est de 9,6 semaines. Les délais étaient significativement plus courts dans les stades tardifs et les carcinomes à petites cellules (p=0,001). Il existait une tendance à des délais plus courts pour les femmes et des délais plus longs pour les classes d’âge les plus élevées.ConclusionL’évaluation des délais de prise en charge, en particulier pour les stades précoces, s’intègre dans le contrôle de la qualité de prise en charge de ces pathologies.SummaryIntroductionLung cancer is the main cause of cancer death in France. The diagnosis is often late and the delay between the onset of symptoms and management is considered an aggravating factor.Material and methodsOur prospective study collected the dates of the start of management of 139 consecutive patients receiving first line treatment for thoracic cancer in our hospital between November 2008 and May 2009. The aim of this study was to evaluate the delays in medical or surgical treatments in patients with thoracic cancer and to determine the cause of these delays.ResultsThe median delay between the first abnormal chest X-ray and treatment was 9.6 weeks. The delays were significantly shorter in the late stages and in small cell cancer (P=0.001). There was a tendency for shorter delays in women and for longer delays in older patients.ConclusionEvaluation of the delays in treatment, particularly in the early stages, is part of the quality control of management of these diseases
Forecasting in the light of Big Data
Predicting the future state of a system has always been a natural motivation
for science and practical applications. Such a topic, beyond its obvious
technical and societal relevance, is also interesting from a conceptual point
of view. This owes to the fact that forecasting lends itself to two equally
radical, yet opposite methodologies. A reductionist one, based on the first
principles, and the naive inductivist one, based only on data. This latter view
has recently gained some attention in response to the availability of
unprecedented amounts of data and increasingly sophisticated algorithmic
analytic techniques. The purpose of this note is to assess critically the role
of big data in reshaping the key aspects of forecasting and in particular the
claim that bigger data leads to better predictions. Drawing on the
representative example of weather forecasts we argue that this is not generally
the case. We conclude by suggesting that a clever and context-dependent
compromise between modelling and quantitative analysis stands out as the best
forecasting strategy, as anticipated nearly a century ago by Richardson and von
Neumann
Periodically-dressed Bose-Einstein condensates: a superfluid with an anisotropic and variable critical velocity
Two intersecting laser beams can produce a spatially-periodic coupling
between two components of an atomic gas and thereby modify the dispersion
relation of the gas according to a dressed-state formalism. Properties of a
Bose-Einstein condensate of such a gas are strongly affected by this
modification. A Bogoliubov transformation is presented which accounts for
interparticle interactions to obtain the quasiparticle excitation spectrum in
such a condensate. The Landau critical velocity is found to be anisotropic and
can be widely tuned by varying properties of the dressing laser beams.Comment: 5 pages, 4 figure
- …