223 research outputs found
Evaluation of the surface strength of glass plates shaped by hot slumping process
The Hot Slumping Technology is under development by several research groups
in the world for the realization of grazing-incidence segmented mirrors for
X-ray astronomy, based on thin glass plates shaped over a mould at temperatures
above the transformation point. The performed thermal cycle and related
operations might have effects on the strength characteristics of the glass,
with consequences on the structural design of the elemental optical modules and
consecutively on the entire X-ray optic for large astronomical missions like
IXO and ATHENA. The mechanical strength of glass plates after they underwent
the slumping process was tested through destructive double-ring tests in the
context of a study performed by the Astronomical Observatory of Brera with the
collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire
study has been realized on more than 200 D263 Schott borosilicate glass
specimens of dimension 100 mm x 100 mm and thickness 0.4 mm, either flat or
bent at a Radius of Curvature of 1000 mm through the particular pressure
assisted hot slumping process developed by INAF-OAB. The collected experimental
data have been compared to non-linear FEM analyses and treated with Weibull
statistic to assess the current IXO glass X-ray telescope design, in terms of
survival probability, when subject to static and acoustic loads characteristic
of the launch phase. The paper describes the activities performed and presents
the obtained results.Comment: Accepted for publication in Optical Enginnering (Jun 26, 2014
Valorisation of Effluents from Anaerobic Digestion as Single Cell Protein – Focus on Safe Gas Supply
Thrombolysis ImPlementation in Stroke (TIPS): evaluating the effectiveness of a strategy to increase the adoption of best evidence practice – protocol for a cluster randomised controlled trial in acute stroke care
BACKGROUND Stroke is a leading cause of death and disability internationally. One of the three effective interventions in the acute phase of stroke care is thrombolytic therapy with tissue plasminogen activator (tPA), if given within 4.5 hours of onset to appropriate cases of ischaemic stroke. OBJECTIVES To test the effectiveness of a multi-component multidisciplinary collaborative approach compared to usual care as a strategy for increasing thrombolysis rates for all stroke patients at intervention hospitals, while maintaining accepted benchmarks for low rates of intracranial haemorrhage and high rates of functional outcomes for both groups at three months. METHODS AND DESIGN A cluster randomised controlled trial of 20 hospitals across 3 Australian states with 2 groups: multi- component multidisciplinary collaborative intervention as the experimental group and usual care as the control group. The intervention is based on behavioural theory and analysis of the steps, roles and barriers relating to rapid assessment for thrombolysis eligibility; it involves a comprehensive range of strategies addressing individual-level and system-level change at each site. The primary outcome is the difference in tPA rates between the two groups post-intervention. The secondary outcome is the proportion of tPA treated patients in both groups with good functional outcomes (modified Rankin Score (mRS <2) and the proportion with intracranial haemorrhage (mRS ≥2), compared to international benchmarks. DISCUSSION TIPS will trial a comprehensive, multi-component and multidisciplinary collaborative approach to improving thrombolysis rates at multiple sites. The trial has the potential to identify methods for optimal care which can be implemented for stroke patients during the acute phase. Study findings will include barriers and solutions to effective thrombolysis implementation and trial outcomes will be published whether significant or not. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry: ACTRN12613000939796
Thrombolysis ImPlementation in Stroke (TIPS): Evaluating the effectiveness of a strategy to increase the adoption of best evidence practice - protocol for a cluster randomised controlled trial in acute stroke care
Background: Stroke is a leading cause of death and disability internationally. One of the three effective interventions in the acute phase of stroke care is thrombolytic therapy with tissue plasminogen activator (tPA), if given within 4.5 hours of onset to appropriate cases of ischaemic stroke.Objectives: To test the effectiveness of a multi-component multidisciplinary collaborative approach compared to usual care as a strategy for increasing thrombolysis rates for all stroke patients at intervention hospitals, while maintaining accepted benchmarks for low rates of intracranial haemorrhage and high rates of functional outcomes for both groups at three months.Methods and design: A cluster randomised controlled trial of 20 hospitals across 3 Australian states with 2 groups: multi- component multidisciplinary collaborative intervention as the experimental group and usual care as the control group. The intervention is based on behavioural theory and analysis of the steps, roles and barriers relating to rapid assessment for thrombolysis eligibility; it involves a comprehensive range of strategies addressing individual-level and system-level change at each site. The primary outcome is the difference in tPA rates between the two groups post-intervention. The secondary outcome is the proportion of tPA treated patients in both groups with good functional outcomes (modified Rankin Score (mR
HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence
Self-Exempting Beliefs and Intention to Quit Smoking within a Socially Disadvantaged Australian Sample of Smokers
An investigation of beliefs used to rationalise smoking will have important implications for the content of anti-smoking programs targeted at socioeconomically disadvantaged groups, who show the lowest rates of cessation in the population. This study aimed to assess the types of self-exempting beliefs reported by a sample of socioeconomically disadvantaged smokers, and identify associations between these beliefs and other smoking-related factors with quit intentions. A cross-sectional survey was conducted from March–December 2012 with smokers seeking welfare assistance in New South Wales (NSW), Australia (n= 354; response rate 79%). Responses to a 16-item self-exempting beliefs scale and intention to quit, smoker identity, and enjoyment of smoking were assessed. Most participants earned <AUD$400/week (70%), and had not completed secondary schooling (64%). All “jungle” beliefs (normalising the dangers of smoking due to ubiquity of risk) and selected “skeptic” beliefs were endorsed by 25%–47% of the sample, indicating these smokers may not fully understand the extensive risks associated with smoking. Smokers with limited quit intentions held significantly stronger self-exempting beliefs than those contemplating or preparing to quit (all p< 0.01). After adjusting for smoking-related variables only “skeptic” beliefs were significantly associated with intention to quit (p= 0.02). Some of these beliefs are incorrect and could be addressed in anti-smoking campaigns
Data Resource Profile: The World Health Organization Study on global AGEing and adult health (SAGE)
Population ageing is rapidly becoming a global issue and will have a major impact on health policies and programmes. The World Health Organization's Study on global AGEing and adult health (SAGE) aims to address the gap in reliable data and scientific knowledge on ageing and health in low- and middle-income countries. SAGE is a longitudinal study with nationally representative samples of persons aged 50+ years in China, Ghana, India, Mexico, Russia and South Africa, with a smaller sample of adults aged 18-49 years in each country for comparisons. Instruments are compatible with other large high-income country longitudinal ageing studies. Wave 1 was conducted during 2007-2010 and included a total of 34 124 respondents aged 50+ and 8340 aged 18-49. In four countries, a subsample consisting of 8160 respondents participated in Wave 1 and the 2002/04 World Health Survey (referred to as SAGE Wave 0). Wave 2 data collection will start in 2012/13, following up all Wave 1 respondents. Wave 3 is planned for 2014/15. SAGE is committed to the public release of study instruments, protocols and meta- and micro-data: access is provided upon completion of a Users Agreement available through WHO's SAGE website (www.who.int/healthinfo/systems/sage) and WHO's archive using the National Data Archive application (http://apps.who.int/healthinfo/systems/surveydata
Chronic MPTP in Mice Damage-specific Neuronal Phenotypes within Dorsal Laminae of the Spinal Cord
The neurotoxin 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism. Such a disease is characterized by neuronal damage in multiple regions beyond the nigrostriatal pathway including the spinal cord. The neurotoxin MPTP damages spinal motor neurons. So far, in Parkinson’s disease (PD) patients alpha-synuclein aggregates are described in the dorsal horn of the spinal cord. Nonetheless, no experimental investigation was carried out to document whether MPTP affects the sensory compartment of the spinal cord. Thus, in the present study, we investigated whether chronic exposure to small doses of MPTP (5 mg/kg/X2, daily, for 21 days) produces any pathological effect within dorsal spinal cord. This mild neurotoxic protocol produces a damage only to nigrostriatal dopamine (DA) axon terminals with no decrease in DA nigral neurons assessed by quantitative stereology. In these experimental conditions we documented a decrease in enkephalin-, calretinin-, calbindin D28K-, and parvalbumin-positive neurons within lamina I and II and the outer lamina III. Met-Enkephalin and substance P positive fibers are reduced in laminae I and II of chronically MPTP-treated mice. In contrast, as reported in PD patients, alpha-synuclein is markedly increased within spared neurons and fibers of lamina I and II after MPTP exposure. This is the first evidence that experimental parkinsonism produces the loss of specific neurons of the dorsal spinal cord, which are likely to be involved in sensory transmission and in pain modulation providing an experimental correlate for sensory and pain alterations in PD
Neuronal chemotaxis by optically manipulated liposomes
We probe chemotaxis of single neurons, induced by signalling molecules which were optically delivered from liposomes in the neighbourhood of the cells. We implemented an optical tweezers setup combined with a micro-dissection system on an inverted microscope platform. Molecules of Netrin-1 protein were encapsulated into micron-sized liposomes and manipulated to micrometric distances from a specific growth cone of a hippocampal neuron by the IR optical tweezers. The molecules were then released broken the liposomes with UV laser pulses. Chemotaxis induced by the delivered molecules was confirmed by the migration of the growth cone toward the liposome position. Since the delivery can be manipulated with high temporal and spatial resolution and the number of molecules released can be controlled quite precisely by tuning the liposome size and the solution concentration, this technique opens new opportunities to investigate the effect of physiological active compounds as Netrin-1 to neuronal signalling and guidance, which represents an important issue in neurobiology
Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation
Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al
- …
