62 research outputs found

    Electric readout of magnetization dynamics in a ferromagnet-semiconductor system

    Full text link
    We apply an analysis of time-dependent spin-polarized current in a semiconductor channel at room temperature to establish how the magnetization configuration and dynamics of three ferromagnetic terminals, two of them biased and third connected to a capacitor, affect the currents and voltages. In a steady state, the voltage on the capacitor is related to spin accumulation in the channel. When the magnetization of one of the terminals is rotated, a transient current is triggered. This effect can be used for electrical detection of magnetization reversal dynamics of an electrode or for dynamical readout of the alignment of two magnetic contacts.Comment: Revised version, 8 pages, 3 figure

    Lateral diffusive spin transport in layered structures

    Full text link
    A one dimensional theory of lateral spin-polarized transport is derived from the two dimensional flow in the vertical cross section of a stack of ferromagnetic and paramagnetic layers. This takes into account the influence of the lead on the lateral current underneath, in contrast to the conventional 1D modeling by the collinear configuration of lead/channel/lead. Our theory is convenient and appropriate for the current in plane configuration of an all-metallic spintronics structure as well as for the planar structure of a semiconductor with ferromagnetic contacts. For both systems we predict the optimal contact width for maximal magnetoresistance and propose an electrical measurement of the spin diffusion length for a wide range of materials.Comment: 4 pages, 3 figure

    Spintronics for electrical measurement of light polarization

    Full text link
    The helicity of a circularly polarized light beam may be determined by the spin direction of photo-excited electrons in a III-V semiconductor. We present a theoretical demonstration how the direction of the ensuing electron spin polarization may be determined by electrical means of two ferromagnet/semiconductor Schottky barriers. The proposed scheme allows for time-resolved detection of spin accumulation in small structures and may have a device application.Comment: Revised version, 8 two-column pages, 5 figures; Added: a comprehensive time dependent analysis, figures 3b-3c & 5, equations 6 & 13-16 and 3 references. submitted to Phys. Rev.

    Femtosecond Demagnetization and Hot Hole Relaxation in Ferromagnetic GaMnAs

    Full text link
    We have studied ultrafast photoinduced demagnetization in GaMnAs via two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap midinfrared pump pulses strongly excite the valence band, while near-infrared probe pulses reveal sub-picosecond demagnetization that is followed by an ultrafast (∌\sim1 ps) partial recovery of the Kerr signal. Through comparison with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation of holes. We propose that the dynamical polarization of holes through pp-dd scattering is the source of the observed probe signal. These results support the physical picture of femtosecond demagnetization proposed earlier for InMnAs, identifying the critical roles of both energy and spin relaxation of hot holes.Comment: 7 pages, 6 figure

    Electrical expression of spin accumulation in ferromagnet/semiconductor structures

    Full text link
    We treat the spin injection and extraction via a ferromagnetic metal/semiconductor Schottky barrier as a quantum scattering problem. This enables the theory to explain a number of phenomena involving spin-dependent current through the Schottky barrier, especially the counter-intuitive spin polarization direction in the semiconductor due to current extraction seen in recent experiments. A possible explanation of this phenomenon involves taking into account the spin-dependent inelastic scattering via the bound states in the interface region. The quantum-mechanical treatment of spin transport through the interface is coupled with the semiclassical description of transport in the adjoining media, in which we take into account the in-plane spin diffusion along the interface in the planar geometry used in experiments. The theory forms the basis of the calculation of spin-dependent current flow in multi-terminal systems, consisting of a semiconductor channel with many ferromagnetic contacts attached, in which the spin accumulation created by spin injection/extraction can be efficiently sensed by electrical means. A three-terminal system can be used as a magnetic memory cell with the bit of information encoded in the magnetization of one of the contacts. Using five terminals we construct a reprogrammable logic gate, in which the logic inputs and the functionality are encoded in magnetizations of the four terminals, while the current out of the fifth one gives a result of the operation.Comment: A review to appear in Mod. Phys. Lett.

    Ultrafast demagnetization in the sp-d model: a theoretical study

    Full text link
    We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of localized spins that are coupled to carriers' spins by sp-d exchange interaction. A prominent example of a class of materials falling into this category are ferromagnetic (III,Mn)V semiconductors, in which ultrafast demagnetization has been recently observed. In the proposed model light excitation heats up the population of carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the carriers. We derive the Master equation for the density matrix of a localized spin interacting with the hot carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of polarization between the localized and itinerant spins leading to significant demagnetization of the localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure

    Quantum decoherence of a charge qubit in a spin-fermion model

    Full text link
    We consider quantum decoherence in solid-state systems by studying the transverse dynamics of a single qubit interacting with a fermionic bath and driven by external pulses. Our interest is in investigating the extent to which the lost coherence can be restored by the application of external pulses to the qubit. We show that the qubit evolution under various pulse sequences can be mapped onto Keldysh path integrals. This approach allows a simple diagrammatic treatment of different bath excitation processes contributing to qubit decoherence. We apply this theory to the evolution of the qubit coupled to the Andreev fluctuator bath in the context of widely studied superconducting qubits. We show that charge fluctuations within the Andreev-fluctuator model lead to a 1/f noise spectrum with a characteristic temperature depedence. We discuss the strategy for suppression of decoherence by the application of higher-order (beyond spin echo) pulse sequences.Comment: 7 pages, 4 figures; extended version (accepted to Phys. Rev. B

    Sensing remote nuclear spins

    Full text link
    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor

    Nanoscale structural and chemical analysis of F-implanted enhancement-mode InAlN/GaN heterostructure field effect transistors

    Get PDF
    We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.</jats:p

    Enhancement of Intersubband Absorption in GaInN/AlInN Quantum Wells

    Get PDF
    GaInN/AlInN multiple quantum wells were grown by RF plasma--assisted molecular beam epitaxy on (0001) GaN/sapphire substrates. The strain-engineering concept was applied to eliminate cracking effect and to improve optical parameters of intersubband structures grown on GaN substrates. The high quality intersubband structures were fabricated and investigated as an active region for applications in high-speed devices at telecommunication wavelengths. We observed the significant enhancement of intersubband absorption with an increase in the barrier thickness. We attribute this effect to the better localization of the second electron level in the quantum well. The strong absorption is very important on the way to intersubband devices designed for high-speed operation. The experimental results were compared with theoretical calculations which were performed within the electron effective mass approximation. A good agreement between experimental data and theoretical calculations was observed for the investigated samples
    • 

    corecore