1,625 research outputs found

    Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity

    Get PDF
    An increased permeability of the intestinal barrier is proposed as a major event in the pathophysiology of conditions characterized by chronic gut inflammation. This study investigated the capacity of pure anthocyanins (AC), and berry and rice extracts containing different types and amounts of AC, to inhibit tumor necrosis alpha (TNFα)-induced permeabilization of Caco-2 cell monolayers. Caco-2 cells differentiated into intestinal epithelial cell monolayers were incubated in the absence/presence of TNFα, with or without the addition of AC or AC-rich plant extracts (ACRE). AC and ACRE inhibited TNFα-induced loss of monolayer permeability as assessed by changes in transepithelial electrical resistance (TEER) and paracellular transport of FITC-dextran. In the range of concentrations tested (0.25–1 μM), O-glucosides of cyanidin, and delphinidin, but not those of malvidin, peonidin and petunidin protected the monolayer from TNFα-induced decrease of TEER and increase of FITC-dextran permeability. Cyanidin and delphinidin acted by mitigating TNFα-triggered activation of transcription factor NF-κB, and downstream phosphorylation of myosin light chain (MLC). The protective actions of the ACRE on TNFα-induced TEER increase was positively correlated with the sum of cyanidins and delphinidins (r2 = 0.83) content in the ACRE. However, no correlation was observed between TEER and ACRE total AC, malvidin, or peonidin content. Results support a particular capacity of cyanidins and delphinidins in the protection of the intestinal barrier against inflammation-induced permeabilization, in part through the inhibition of the NF-κB pathway.Fil: Cremonini, Eleonora. University of California at Davis; Estados UnidosFil: Mastaloudis, Angela. Nu Skin Enterprises; Estados UnidosFil: Hester, Shelly N.. Nu Skin Enterprises; Estados UnidosFil: Verstraeten, Sandra Viviana. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Anderson, Maureen. University of California at Davis; Estados UnidosFil: Wood, Steven M.. Nu Skin Enterprises; Estados UnidosFil: Waterhouse, Andrew L.. University of California at Davis; Estados UnidosFil: Fraga, César Guillermo. University of California at Davis; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Oteiza, Patricia Isabel. University of California at Davis; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A general condition of inflationary cosmology on trans-Planckian physics

    Full text link
    We consider a more general initial condition satisfying the minimal uncertainty relationship. We calculate the power spectrum of a simple model in inflationary cosmology. The results depend on perturbations generated below a fundamental scale, e.g. the Planck scale.Comment: 7 pages, References adde

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe

    Effective theories of single field inflation when heavy fields matter

    Get PDF
    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected, to appear in Journal of High Energy Physic

    Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity

    Get PDF
    This paper focuses on supergravity duals of BPS states in N=4 super Yang-Mills. In order to describe these duals, we begin with a sequence of breathing mode reductions of IIB supergravity: first on S^3, then S^3 x S^1, and finally on S^3 x S^1 x CP^1. We then follow with a complete supersymmetry analysis, yielding 1/8, 1/4 and 1/2 BPS configurations, respectively (where in the last step we take the Hopf fibration of S^3). The 1/8 BPS geometries, which have an S^3 isometry and are time-fibered over a six-dimensional base, are determined by solving a non-linear equation for the Kahler metric on the base. Similarly, the 1/4 BPS configurations have an S^3 x S^1 isometry and a four-dimensional base, whose Kahler metric obeys another non-linear, Monge-Ampere type equation. Despite the non-linearity of the problem, we develop a universal bubbling AdS description of these geometries by focusing on the boundary conditions which ensure their regularity. In the 1/8 BPS case, we find that the S^3 cycle shrinks to zero size on a five-dimensional locus inside the six-dimensional base. Enforcing regularity of the full solution requires that the interior of a smooth, generally disconnected five-dimensional surface be removed from the base. The AdS_5 x S^5 ground state corresponds to excising the interior of an S^5, while the 1/8 BPS excitations correspond to deformations (including topology change) of the S^5 and/or the excision of additional droplets from the base. In the case of 1/4 BPS configurations, by enforcing regularity conditions, we identify three-dimensional surfaces inside the four-dimensional base which separate the regions where the S^3 shrinks to zero size from those where the S^1 shrinks.Comment: 94 pages, 6 figures, latex, typos corrected, references added, one new Appendi

    Noncommutative Inflation and the CMB Multipoles

    Full text link
    The first year results of WMAP tentatively indicate running of the spectral index as well as a deficit of power in the low multipoles in the CMB spectrum. The former can be rather easily understood in the noncommutative inflation model, and the latter, as we shall show in this paper, still appears to be an anomaly, even though the noncommutative inflation model already suppresses the low multipoles to a certain degree. By fitting the power spectrum, we determine the string scale to be ls4×1029l_s\sim 4\times 10^{-29}cm.Comment: 11 pages, 4 figures, harvmac; v2: references adde

    Integrable Deformations of c^=1\hat{c}=1 Strings in Flux Backgrounds

    Full text link
    We study d=2 0A string theory perturbed by tachyon momentum modes in backgrounds with non-trivial tachyon condensate and Ramond-Ramond (RR) flux. In the matrix model description, we uncover a complexified Toda lattice hierarchy constrained by a pair of novel holomorphic string equations. We solve these constraints in the classical limit for general RR flux and tachyon condensate. Due to the non-holomorphic nature of the tachyon perturbations, the transcendental equations which we derive for the string susceptibility are manifestly non-holomorphic. We explore the phase structure and critical behavior of the theory.Comment: 39 pages, 4 figure

    Anomalous Dimensions and Non-Gaussianity

    Full text link
    We analyze the signatures of inflationary models that are coupled to strongly interacting field theories, a basic class of multifield models also motivated by their role in providing dynamically small scales. Near the squeezed limit of the bispectrum, we find a simple scaling behavior determined by operator dimensions, which are constrained by the appropriate unitarity bounds. Specifically, we analyze two simple and calculable classes of examples: conformal field theories (CFTs), and large-N CFTs deformed by relevant time-dependent double-trace operators. Together these two classes of examples exhibit a wide range of scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local non-Gaussianity in different regimes. Along the way, we compare and contrast the shape and amplitude with previous results on weakly coupled fields coupled to inflation. This signature provides a precision test for strongly coupled sectors coupled to inflation via irrelevant operators suppressed by a high mass scale up to 1000 times the inflationary Hubble scale.Comment: 40 pages, 10 figure
    corecore