253 research outputs found

    Light-like Big Bang singularities in string and matrix theories

    Full text link
    Important open questions in cosmology require a better understanding of the Big Bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like Big Bang models, presenting both solved and open problems.Comment: 20 pages, invited review for Class. Quant. Grav; v3: section 2.3 shortened, discussion on DLCQ added in section 3.1, published versio

    Introduction: memory on the move

    Get PDF

    One-Loop Effect of Null-Like Cosmology's Holographic Dual Super-Yang-Mills

    Get PDF
    We calculate the 1-loop effect in super-Yang-Mills which preserves 1/4-supersymmetries and is holographically dual to the null-like cosmology with a big-bang singularity. Though the bosonic and fermionic spectra do not agree precisely, we do obtain vanishing 1-loop vacuum energy for generic warped plane-wave type backgrounds with a big-bang singularity. Moreover, we find that the cosmological "constant" contributed either by bosons or fermions is time-dependent. The issues about the particle production of some background and about the UV structure are also commented. We argue that the effective higher derivative interactions are suppressed as long as the Fourier transform of the time-dependent coupling is UV-finite. Our result holds for scalar configurations that are BPS but with arbitrary time-dependence. This suggests the existence of non-renormalization theorem for such a new class of time-dependent theories. Altogether, it implies that such a super-Yang-Mills is scale-invariant, and that its dual bulk quantum gravity might behave regularly near the big bang.Comment: 20 pages, v2 add comments and references, v3 clarify BPS condition & add new discussion on particle production and UV structure, v4&v5 minor changes, final to JHE

    Inhomogeneous holographic thermalization

    Get PDF
    The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.Comment: 53 pages, 10 figures; v2: references adde

    Inhomogeneous Thermalization in Strongly Coupled Field Theories

    Full text link
    To describe theoretically the creation and evolution of the quark-gluon plasma, one typically employs three ingredients: a model for the initial state, non-hydrodynamic early time evolution, and hydrodynamics. In this paper we study the non-hydrodynamic early time evolution using the AdS/CFT correspondence in the presence of inhomogeneities. We find that the AdS description of the early time evolution is well-matched by free streaming. Near the end of the early time interval where our analytic computations are reliable, the stress tensor agrees with the second order hydrodynamic stress tensor computed from the local energy density and fluid velocity. Our techniques may also be useful for the study of far-from-equilibrium strongly coupled systems in other areas of physics.Comment: 5 pages, 3 figures; v2: minor clarifications and reference adde

    The non-Abelian gauge theory of matrix big bangs

    Full text link
    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantisation to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t=0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3 small typographical changes

    Shock Waves and Cosmological Matrix Models

    Full text link
    We find the shock wave solutions in a class of cosmological backgrounds with a null singularity, each of these backgrounds admits a matrix description. A shock wave solution breaks all supersymmetry meanwhile indicates that the interaction between two static D0-branes cancel, thus provides basic evidence for the matrix description. The probe action of a D0-brane in the background of another suggests that the usual perturbative expansion of matrix model breaks down.Comment: 10 pages, harvmav, v2: some comments on instability added, v3: version to appear in JHE

    A Matrix Big Bang

    Full text link
    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame metric added, references adde

    Inflation with a stringy minimal length, reworked

    Full text link
    In this paper we revisit the formulation of scalar field theories on de Sitter backgrounds subject to the generalized uncertainty principle (GUP). The GUP arises in several contexts in string theory, but is most readily thought of as resulting from using strings as effective probes of geometry, which suggests an uncertainty relation incorporating the string scale lsl_s. After reviewing the string theoretic case for the GUP, which implies a minimum length scale lsl_s, we follow in the footsteps of Kempf and concern ourselves with how one might write down field theories which respect the GUP. We uncover a new representation of the GUP, which unlike previous studies, readily permits exact analytical solutions for the mode functions of a scalar field on de Sitter backgrounds. We find that scalar fields cannot be quantized on inflationary backgrounds with a Hubble radius H1H^{-1} smaller than the string scale, implying a sensibly stringy (as opposed to Planckian) cutoff on the scale of inflation resulting from the GUP. We also compute (Hls)2(H l_s)^2 corrections to the two point correlation function analytically and comment on the future prospects of observing such corrections in the fortunate circumstance our universe is described by a very weakly coupled string theory.Comment: To appear in JHEP. Sub-section discussing how our approach avoids certain ordering ambiguities adde

    A Matrix Model for the Null-Brane

    Full text link
    The null-brane background is a simple smooth 1/2 BPS solution of string theory. By tuning a parameter, this background develops a big crunch/big bang type singularity. We construct the DLCQ description of this space-time in terms of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix description provides a non-perturbative framework in which the fate of both (null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
    corecore