1,234 research outputs found

    Numerical Simulations of High Redshift Star Formation in Dwarf Galaxies

    Get PDF
    We present first results from three-dimensional hydrodynamic simulations of the high redshift formation of dwarf galaxies. The simulations use an Eulerian adaptive mesh refinement technique to follow the non-equilibrium chemistry of hydrogen and helium with cosmological initial conditions drawn from a popular Lambda-dominated CDM model. We include the effects of reionization using a uniform radiation field, a phenomenological description of the effect of star formation and, in a separate simulation, the effects of stellar feedback. The results highlight the effects of stellar feedback and photoionization on the baryon content and star formation of galaxies with virial temperatures of approximately 10^4K. Dwarf sized dark matter halos that assemble prior to reionization are able to form stars. Most halos of similar mass that assemble after reionization do not form stars by redshift of three. Dwarf galaxies that form stars show large variations in their gas content because of stellar feedback and photoionization effects. Baryon-to-dark matter mass ratios are found to lie below the cosmic mean as a result of stellar feedback. The supposed substructure problem of CDM is critically assessed on the basis of these results. The star formation histories modulated by radiative and stellar feedbacks are discussed. In addition, metallicities of individual objects are shown to be naturally correlated with their mass-to-light ratios as is also evident in the properties of local dwarf galaxies.Comment: 27 pages, 8 figures, accepted for publication in Ap

    Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?

    Get PDF
    We present a smoothed particle hydrodynamic (SPH) simulation that reproduces a galaxy that is a moderate facsimile of those observed. The primary failing point of previous simulations of disk formation, namely excessive transport of angular momentum from gas to dark matter, is ameliorated by the inclusion of a supernova feedback algorithm that allows energy to persist in the model ISM for a period corresponding to the lifetime of stellar associations. The inclusion of feedback leads to a disk at a redshift z=0.52z=0.52, with a specific angular momentum content within 10% of the value required to fit observations. An exponential fit to the disk baryon surface density gives a scale length within 17% of the theoretical value. Runs without feedback, with or without star formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Formation of Massive Primordial Stars in a Reionized Gas

    Full text link
    We use cosmological hydrodynamic simulations with unprecedented resolution to study the formation of primordial stars in an ionized gas at high redshifts. Our approach includes all the relevant atomic and molecular physics to follow the thermal evolution of a prestellar gas cloud to very high densities of ~10^{18} cm^{-3}. We locate a star-forming gas cloud within a reionized region in our cosmological simulation. The first run-away collapse is triggered when the gas cloud's mass is ~40 Msun. We show that the cloud core remains stable against chemo-thermal instability and also against gravitational deformation throughout its evolution. Consequently, a single proto-stellar seed is formed, which accretes the surrounding hot gas at the rate ~10^{-3} Msun/year. We carry out proto-stellar evolution calculations using the inferred accretion rate. The resulting mass of the star when it reaches the zero-age main sequence is M_ZAMS ~40 Msun. We argue that, since the obtained M_ZAMS is as large as the mass of the collapsing parent cloud, the final stellar mass should be close to this value. Such massive, rather than exceptionally massive, primordial stars are expected to cause early chemical enrichment of the Universe by exploding as black hole-forming super/hypernovae, and may also be progenitors of high redshift gamma-ray bursts. The elemental abundance patterns of recently discovered hyper metal-poor stars suggest that they might have been born from the interstellar medium that was metal-enriched by supernovae of these massive primordial stars.Comment: Revised version. To appear in ApJ

    Ray splitting in paraxial optical cavities

    Full text link
    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl

    A New Algorithm for Computing Statistics of Weak Lensing by Large-Scale Structure

    Full text link
    We describe an efficient algorithm for calculating the statistics of weak lensing by large-scale structure based on a tiled set of independent particle-mesh N-body simulations which telescope in resolution along the line of sight. This efficiency allows us to predict not only the mean properties of lensing observables such as the power spectrum, skewness and kurtosis of the convergence, but also their sampling errors for finite fields of view, which are themselves crucial for assessing the cosmological significance of observations. We find that the nongaussianity of the distribution substantially increases the sampling errors for the skewness and kurtosis in the several to tens of arcminutes regime, whereas those for the power spectrum are only fractionally increased even out to wavenumbers where shot noise from the intrinsic ellipticities of the galaxies will likely dominate the errors.Comment: 12 pages, 13 figures; minor changes reflect accepted versio

    Gaussian random waves in elastic media

    Full text link
    Similar to the Berry conjecture of quantum chaos we consider elastic analogue which incorporates longitudinal and transverse elastic displacements with corresponding wave vectors. Based on that we derive the correlation functions for amplitudes and intensities of elastic displacements. Comparison to numerics in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure

    Cosmological Hydrodynamics with Multi-Species Chemistry and Nonequilibrium Ionization and Cooling

    Get PDF
    We have developed a method of solving for multi-species chemical reaction flows in non--equilibrium and self--consistently with the hydrodynamic equations in an expanding FLRW universe. The method is based on a backward differencing scheme for the required stability when solving stiff sets of equations and is designed to be efficient for three-dimensional calculations without sacrificing accuracy. In all, 28 kinetic reactions are solved including both collisional and radiative processes for the following nine separate species: H, H+, He, He+, He++, H-, H2+, H2, and e-. The method identifies those reactions (involving H- and H2+) ocurring on the shortest time scales, decoupling them from the rest of the network and imposing equilibrium concentrations to good accuracy over typical cosmological dynamical times. Several tests of our code are presented, including radiative shock waves, cosmological sheets, conservation constraints, and fully three-dimensional simulations of CDM cosmological evolutions in which we compare our method to results obtained when the packaged routine LSODAR is substituted for our algorithms.Comment: Latex and postscript, 24 pages, with 6 figures. The paper is also available at http://zeus.ncsa.uiuc.edu:8080/~abel/PGas/bib.html Submitted to New Astronom

    Exact trace formulae for a class of one-dimensional ray-splitting systems

    Get PDF
    Based on quantum graph theory we establish that the ray-splitting trace formula proposed by Couchman {\it et al.} (Phys. Rev. A {\bf 46}, 6193 (1992)) is exact for a class of one-dimensional ray-splitting systems. Important applications in combinatorics are suggested.Comment: 14 pages, 3 figure

    Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

    Full text link
    Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (P\'olya necklaces).Comment: 15 page
    corecore