835 research outputs found

    Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation

    Full text link
    We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion-density 1.03×1022/cm31.03 \times 10^{22}/cm^3. The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population which are consistent with the atomic structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS

    Structure Factor and Electronic Structure of Compressed Liquid Rubidium

    Full text link
    We have applied the quantal hypernetted-chain equations in combination with the Rosenfeld bridge-functional to calculate the atomic and the electronic structure of compressed liquid-rubidium under high pressure (0.2, 2.5, 3.9, and 6.1 GPa); the calculated structure factors are in good agreement with experimental results measured by Tsuji et al. along the melting curve. We found that the Rb-pseudoatom remains under these high pressures almost unchanged with respect to the pseudoatom at room pressure; thus, the effective ion-ion interaction is practically the same for all pressure-values. We observe that all structure factors calculated for this pressure-variation coincide almost into a single curve if wavenumbers are scaled in units of the Wigner-Seitz radius aa although no corresponding scaling feature is observed in the effective ion-ion interaction.This scaling property of the structure factors signifies that the compression in liquid-rubidium is uniform with increasing pressure; in absolute Q-values this means that the first peak-position (Q1Q_1) of the structure factor increases proportionally to V1/3V^{-1/3} (VV being the specific volume per ion), as was experimentally observed by Tsuji et al.Comment: 18 pages, 11 figure

    Pressure formulas for liquid metals and plasmas based on the density-functional theory

    Full text link
    At first, pressure formulas for the electrons under the external potential produced by fixed nuclei are derived both in the surface integral and volume integral forms concerning an arbitrary volume chosen in the system; the surface integral form is described by a pressure tensor consisting of a sum of the kinetic and exchange-correlation parts in the density-functional theory, and the volume integral form represents the virial theorem with subtraction of the nuclear virial. Secondly on the basis of these formulas, the thermodynamical pressure of liquid metals and plasmas is represented in the forms of the surface integral and the volume integral including the nuclear contribution. From these results, we obtain a virial pressure formula for liquid metals, which is more accurate and simpler than the standard representation. From the view point of our formulation, some comments are made on pressure formulas derived previously and on a definition of pressure widely used.Comment: 18 pages, no figur

    How to construct spin chains with perfect state transfer

    Full text link
    It is shown how to systematically construct the XXXX quantum spin chains with nearest-neighbor interactions that allow perfect state transfer (PST). Sets of orthogonal polynomials (OPs) are in correspondence with such systems. The key observation is that for any admissible one-excitation energy spectrum, the weight function of the associated OPs is uniquely prescribed. This entails the complete characterization of these PST models with the mirror symmetry property arising as a corollary. A simple and efficient algorithm to obtain the corresponding Hamiltonians is presented. A new model connected to a special case of the symmetric qq-Racah polynomials is offered. It is also explained how additional models with PST can be derived from a parent system by removing energy levels from the one-excitation spectrum of the latter. This is achieved through Christoffel transformations and is also completely constructive in regards to the Hamiltonians.Comment: 7 page

    Phase Diagram for Anderson Disorder: beyond Single-Parameter Scaling

    Full text link
    The Anderson model for independent electrons in a disordered potential is transformed analytically and exactly to a basis of random extended states leading to a variant of augmented space. In addition to the widely-accepted phase diagrams in all physical dimensions, a plethora of additional, weaker Anderson transitions are found, characterized by the long-distance behavior of states. Critical disorders are found for Anderson transitions at which the asymptotically dominant sector of augmented space changes for all states at the same disorder. At fixed disorder, critical energies are also found at which the localization properties of states are singular. Under the approximation of single-parameter scaling, this phase diagram reduces to the widely-accepted one in 1, 2 and 3 dimensions. In two dimensions, in addition to the Anderson transition at infinitesimal disorder, there is a transition between two localized states, characterized by a change in the nature of wave function decay.Comment: 51 pages including 4 figures, revised 30 November 200

    A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line

    Get PDF
    Szego's procedure to connect orthogonal polynomials on the unit circle and orthogonal polynomials on [-1,1] is generalized to nonsymmetric measures. It generates the so-called semi-orthogonal functions on the linear space of Laurent polynomials L, and leads to a new orthogonality structure in the module LxL. This structure can be interpreted in terms of a 2x2 matrix measure on [-1,1], and semi-orthogonal functions provide the corresponding sequence of orthogonal matrix polynomials. This gives a connection between orthogonal polynomials on the unit circle and certain classes of matrix orthogonal polynomials on [-1,1]. As an application, the strong asymptotics of these matrix orthogonal polynomials is derived, obtaining an explicit expression for the corresponding Szego's matrix function.Comment: 28 page

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    Exact limiting relation between the structure factors in neutron and x-ray scattering

    Full text link
    The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.Comment: 7 pages, no figure

    Criterion for polynomial solutions to a class of linear differential equation of second order

    Full text link
    We consider the differential equations y''=\lambda_0(x)y'+s_0(x)y, where \lambda_0(x), s_0(x) are C^{\infty}-functions. We prove (i) if the differential equation, has a polynomial solution of degree n >0, then \delta_n=\lambda_n s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}= \lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1}\hbox{and}\quad s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1},\quad n=1,2,.... Conversely (ii) if \lambda_n\lambda_{n-1}\ne 0 and \delta_n=0, then the differential equation has a polynomial solution of degree at most n. We show that the classical differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kind), Gegenbauer, and the Hypergeometric type, etc, obey this criterion. Further, we find the polynomial solutions for the generalized Hermite, Laguerre, Legendre and Chebyshev differential equations.Comment: 12 page
    corecore