2,942 research outputs found
The Speciality Index as invariant indicator in the BKL Mixmaster Dynamics
The speciality index, which has been mainly used in Numerical Relativity for
studying gravitational waves phenomena as an indicator of the special or
non-special Petrov type character of a spacetime, is applied here in the
context of Mixmaster cosmology, using the Belinski-Khalatnikov-Lifshitz map.
Possible applications for the associated chaotic dynamics are discussed
Geometric transport along circular orbits in stationary axisymmetric spacetimes
Parallel transport along circular orbits in orthogonally transitive
stationary axisymmetric spacetimes is described explicitly relative to Lie
transport in terms of the electric and magnetic parts of the induced
connection. The influence of both the gravitoelectromagnetic fields associated
with the zero angular momentum observers and of the Frenet-Serret parameters of
these orbits as a function of their angular velocity is seen on the behavior of
parallel transport through its representation as a parameter-dependent Lorentz
transformation between these two inner-product preserving transports which is
generated by the induced connection. This extends the analysis of parallel
transport in the equatorial plane of the Kerr spacetime to the entire spacetime
outside the black hole horizon, and helps give an intuitive picture of how
competing "central attraction forces" and centripetal accelerations contribute
with gravitomagnetic effects to explain the behavior of the 4-acceleration of
circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure
Evidence of and recommendations for non-pharmacological interventions for common geriatric conditions: the SENATOR-ONTOP systematic review protocol.
Introduction: Non-pharmacological therapies for common chronic medical conditions in older patients are underused in clinical practice. We propose a protocol for the assessment of the evidence of non-pharmacological interventions to prevent or treat relevant outcomes in several prevalent geriatric conditions in order to provide recommendations. Methods and analysis: The conditions of interest for which the evidence about efficacy of non-pharmacological interventions will be searched include delirium, falls, pressure sores, urinary incontinence, dementia, heart failure, orthostatic hypotension, sarcopaenia and stroke. For each condition, the following steps will be undertaken: (A) prioritising clinical questions; (B) retrieving the evidence (MEDLINE, the Cochrane Library, CINAHL and PsychINFO will be searched to identify systematic reviews); (C) assessing the methodological quality of the evidence (risk of bias according to the Cochrane method will be applied to the primary studies retrieved from the systematic reviews); (D) developing recommendations based on the evidence (Grading of Recommendations Assessment, Development and Evaluation (GRADE) items—risk of bias, imprecision, inconsistency, indirectness and publication bias—will be used to rate the overall evidence and develop recommendations). Dissemination: For each target condition, at least one systematic overview concerning the evidence of non-pharmacological interventions will be produced and published in peer-reviewed journals
Molecular Structures in T=1 states of 10B
Multi-center (molecular) structures can play an important role in light
nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV
has been observed recently and suggested to have an exotic alpha:2n:alpha
configuration. A search for states with alpha:pn:alpha two-center molecular
configurations in 10B that are analogous to the states with alpha:2n:alpha
structure in 10Be has been performed. The T=1 isobaric analog states in 10B
were studied in the excitation energy range of E=8.7-12.1 MeV using the
reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to
extract parameters for the states observed in the (p,alpha) excitation
function. Five T=1 states in 10B have been identified. The known 2+ and 3-
states at 8.9 MeV have been observed and their partial widths have been
measured. The spin-parities and partial widths for three higher lying states
were determined. Our data support theoretical predictions that the 2+ state at
8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered
state and can be identified as a member of the alpha:np:alpha rotational band.
The next member of this band, the 4+ state, has not been found. A very broad 0+
state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is
suggested and it might be related to similar structures found in 12C, 18O and
20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review
Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations
We compute numerically the quasinormal modes of Kerr-Newman black holes in
the scalar case, for which the perturbation equations are separable. Then we
study different approximations to decouple electromagnetic and gravitational
perturbations of the Kerr-Newman metric, computing the corresponding
quasinormal modes. Our results suggest that the Teukolsky-like equation derived
by Dudley and Finley gives a good approximation to the dynamics of a rotating
charged black hole for Q<M/2. Though insufficient to deal with Kerr-Newman
based models of elementary particles, the Dudley-Finley equation should be
adequate for astrophysical applications.Comment: 13 pages, 3 figures. Minor changes to match version accepted in Phys.
Rev.
Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime
We analyse the concept of active gravitational mass for Reissner-Nordstrom
spacetime in terms of scalar polynomial invariants and the Karlhede
classification. We show that while the Kretschmann scalar does not produce the
expected expression for the active gravitational mass, both scalar polynomial
invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio
Measurement of the 20 and 90 keV resonances in the N reaction via THM
The reaction is of primary importance in
several astrophysical scenarios, including fluorine nucleosynthesis inside AGB
stars as well as oxygen and nitrogen isotopic ratios in meteorite grains. Thus
the indirect measurement of the low energy region of the reaction has been performed to reduce the nuclear
uncertainty on theoretical predictions. In particular the strength of the 20
and 90 keV resonances have been deduced and the change in the reaction rate
evaluated.Comment: 4 pages, 4 figures, submitted to PR
- …
