3,402 research outputs found
Regioselective One-pot Protection and Protection-glycosylation of Carbohydrates
Deciphering the roles and structure–activity relationships of carbohydrates in biological processes requires access to sugar molecules of confirmed structure and high purity. Chemical synthesis is one of the best ways to obtain such access. However, the synthesis of carbohydrates
has long been impeded by two major challenges – the regioselective protection of the polyol moiety of each monosaccharide building block and the stereoselective glycosylation to produce oligosaccharides of desired length. Here, we review the development of the first regioselective protection-glycosylation
and a revolutionary regioselective combinatorial one-pot protection of monosaccharides that can be used to differentiate the various hydroxy groups of monosaccharides with a vast array of orthogonal protective groups in one-pot procedures
Kaluza-Klein Structure Associated With Fat Brane
It is known that the imposition of orbifold boundary conditions on background
scalar field can give rise to a non-trivial vacuum expectation value (VEV)
along extra dimensions, which in turn generates fat branes and associated
unconventional Kaluza-Klein (KK) towers of fermions. We study the structure of
these KK towers in the limit of one large extra dimension and show that
normalizable (bound) states of massless and massive fermions can exist at both
orbifold fixed points. Closer look however indicates that orbifold boundary
conditions act to suppress at least half of bound KK modes, while periodic
boundary conditions tend to drive the high-lying modes to the conventional
structure. By investigating the scattering of fermions on branes, we
analytically compute masses and wavefunctions of KK spectra in the presence of
these boundary conditions up to one-loop level. Implication of KK-number
non-conservation couplings on the Coulomb potential is also examined.Comment: RevTex4, 29 pages, 7 ps figures, new references adde
Recommended from our members
FAM129B, an antioxidative protein, reduces chemosensitivity by competing with Nrf2 for Keap1 binding.
BackgroundThe transcription factor Nrf2 is a master regulator of antioxidant response. While Nrf2 activation may counter increasing oxidative stress in aging, its activation in cancer can promote cancer progression and metastasis, and confer resistance to chemotherapy and radiotherapy. Thus, Nrf2 has been considered as a key pharmacological target. Unfortunately, there are no specific Nrf2 inhibitors for therapeutic application. Moreover, high Nrf2 activity in many tumors without Keap1 or Nrf2 mutations suggests that alternative mechanisms of Nrf2 regulation exist.MethodsInteraction of FAM129B with Keap1 is demonstrated by immunofluorescence, colocalization, co-immunoprecipitation and mammalian two-hybrid assay. Antioxidative function of FAM129B is analyzed by measuring ROS levels with DCF/flow cytometry, Nrf2 activation using luciferase reporter assay and determination of downstream gene expression by qPCR and wester blotting. Impact of FAM129B on in vivo chemosensitivity is examined in mice bearing breast and colon cancer xenografts. The clinical relevance of FAM129B is assessed by qPCR in breast cancer samples and data mining of publicly available databases.FindingsWe have demonstrated that FAM129B in cancer promotes Nrf2 activity by reducing its ubiquitination through competition with Nrf2 for Keap1 binding via its DLG and ETGE motifs. In addition, FAM129B reduces chemosensitivity by augmenting Nrf2 antioxidative signaling and confers poor prognosis in breast and lung cancer.InterpretationThese findings demonstrate the important role of FAM129B in Nrf2 activation and antioxidative response, and identify FMA129B as a potential therapeutic target. FUND: The Chang Gung Medical Foundation (Taiwan) and the Ministry of Science and Technology (Taiwan)
Spectral properties and magneto-optical excitations in semiconductor double-rings under Rashba spin-orbit interaction
We have numerically solved the Hamiltonian of an electron in a semiconductor
double ring subjected to the magnetic flux and Rashba spin-orbit interaction.
It is found that the Aharonov-Bohm energy spectrum reveals multi-zigzag
periodic structures. The investigations of spin-dependent electron dynamics via
Rabi oscillations in two-level and three-level systems demonstrate the
possibility of manipulating quantum states. Our results show that the optimal
control of photon-assisted inter-ring transitions can be achieved by employing
cascade-type and -type transition mechanisms. Under chirped pulse
impulsions, a robust and complete transfer of an electron to the final state is
shown to coincide with the estimation of the Landau-Zener formula.Comment: RevTex, 9 pages, 5 figure
Exploring quantum criticality based on ultracold atoms in optical lattices
Critical behavior developed near a quantum phase transition, interesting in
its own right, offers exciting opportunities to explore the universality of
strongly-correlated systems near the ground state. Cold atoms in optical
lattices, in particular, represent a paradigmatic system, for which the quantum
phase transition between the superfluid and Mott insulator states can be
externally induced by tuning the microscopic parameters. In this paper, we
describe our approach to study quantum criticality of cesium atoms in a
two-dimensional lattice based on in situ density measurements. Our research
agenda involves testing critical scaling of thermodynamic observables and
extracting transport properties in the quantum critical regime. We present and
discuss experimental progress on both fronts. In particular, the thermodynamic
measurement suggests that the equation of state near the critical point follows
the predicted scaling law at low temperatures.Comment: 15 pages, 6 figure
Symmetry Factors of Feynman Diagrams for Scalar Fields
The symmetry factor of Feynman diagrams for real and complex scalar fields is
presented. Being analysis of Wick expansion for Green functions, the mentioned
factor is derived in a general form. The symmetry factor can be separated into
two ones corresponding to that of connected and vacuum diagrams. The
determination of symmetry factors for the vacuum diagrams is necessary as they
play a role in the effective action and phase transitions in cosmology. In the
complex scalar theory the diagrams different in topology may give the same
contribution, hence inverse of the symmetry factor (1/S) for total contribution
is a summation of each similar ones (1/S_i), i.e., 1/S = \sum_i (1/S_i).Comment: Journal version, new references adde
Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling
We performed path integral simulations of spin evolution controlled by the
Rashba spin-orbit interaction in the semiclassical regime for chaotic and
regular quantum dots. The spin polarization dynamics have been found to be
strikingly different from the D'yakonov-Perel' (DP) spin relaxation in bulk
systems. Also an important distinction have been found between long time spin
evolutions in classically chaotic and regular systems. In the former case the
spin polarization relaxes to zero within relaxation time much larger than the
DP relaxation, while in the latter case it evolves to a time independent
residual value. The quantum mechanical analysis of the spin evolution based on
the exact solution of the Schroedinger equation with Rashba SOI has confirmed
the results of the classical simulations for the circular dot, which is
expected to be valid in general regular systems. In contrast, the spin
relaxation down to zero in chaotic dots contradicts to what have to be expected
from quantum mechanics. This signals on importance at long time of the
mesoscopic echo effect missed in the semiclassical simulations.Comment: 14 pages, 9 figure
Is There a Processing Preference for Object Relative Clauses in Chinese? Evidence From ERPs
A consistent finding across head-initial languages, such as English, is that subject relative clauses (SRCs) are easier to comprehend than object relative clauses (ORCs). However, several studies in Mandarin Chinese, a head-final language, revealed the opposite pattern, which might be modulated by working memory (WM) as suggested by recent results from self-paced reading performance. In the present study, event-related potentials (ERPs) were recorded when participants with high and low WM spans (measured by forward digit span and operation span tests) read Chinese ORCs and SRCs. The results revealed an N400-P600 complex elicited by ORCs on the relativizer, whose magnitude was modulated by the WM span. On the other hand, a P600 effect was elicited by SRCs on the head noun, whose magnitude was not affected by the WM span. These findings paint a complex picture of relative clause processing in Chinese such that opposing factors involving structural ambiguities and integration of filler-gap dependencies influence processing dynamics in Chinese relative clauses
Additional molecular testing of saliva specimens improves the detection of respiratory viruses
published_or_final_versio
Extracting density-density correlations from in situ images of atomic quantum gases
We present a complete recipe to extract the density-density correlations and
the static structure factor of a two-dimensional (2D) atomic quantum gas from
in situ imaging. Using images of non-interacting thermal gases, we characterize
and remove the systematic contributions of imaging aberrations to the measured
density-density correlations of atomic samples. We determine the static
structure factor and report results on weakly interacting 2D Bose gases, as
well as strongly interacting gases in a 2D optical lattice. In the strongly
interacting regime, we observe a strong suppression of the static structure
factor at long wavelengths.Comment: 15 pages, 5 figure
- …