11,486 research outputs found

    Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria

    Full text link
    Lattice kinetic equations incorporating the effects of external/internal force fields via a shift of the local fields in the local equilibria, are placed within the framework of continuum kinetic theory. The mathematical treatment reveals that, in order to be consistent with the correct thermo-hydrodynamical description, temperature must also be shifted, besides momentum. New perspectives for the formulation of thermo-hydrodynamic lattice kinetic models of non-ideal fluids are then envisaged. It is also shown that on the lattice, the definition of the macroscopic temperature requires the inclusion of new terms directly related to discrete effects. The theoretical treatment is tested against a controlled case with a non ideal equation of state.Comment: 10 pages, 1 figur

    Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions

    Full text link
    By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg XY spin chain is investigated in the presence of alternating nearest neighbour interactions of exchange couplings, external magnetic fields and next-nearest neighbouring interactions. For dimerized ferromagnetic spin chain, NNNE appears only above the critical dimerized interaction, meanwhile, the dimerized interaction effects quantum phase transition point and improves NNNE to a large value. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN) interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks NNE below and above critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always decreases NNE. The antiferromagnetic NNN interaction results to a larger value of NNNE in comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in press

    An efficient compressive sensing based PS-DInSAR method for surface deformation estimation

    Get PDF
    Permanent scatterers differential interferometric synthetic aperture radar (PS-DInSAR) is a technique for detecting surface micro-deformation, with an accuracy at the centimeter to millimeter level. However, its performance is limited by the number of SAR images available (normally more than 20 are needed). Compressive Sensing (CS) has been proven to be an effective signal recovery method with only a very limited number of measurements. Applying CS to PS-DInSAR, a novel CS-PS-DInSAR method is proposed to estimate the deformation with fewer SAR images. By analyzing the PS-DInSAR process in detail, first the sparsity representation of deformation velocity difference is obtained; then, the mathematical model of CS-PS-DInSAR is derived and the restricted isometry property (RIP) of the measurement matrix is discussed to validate the proposed CS-PS-DInSAR in theory. The implementation of CS-PS-DInSAR is achieved by employing basis pursuit algorithms to estimate the deformation velocity. With the proposed method, DInSAR deformation estimation can be achieved by a much smaller number of SAR images, as demonstrated by simulation result

    The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling

    Get PDF
    Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C.trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.Fil: Chen, Yi-Shan. University of Duke; Estados UnidosFil: Bastidas, Robert J.. University of Duke; Estados UnidosFil: Saka, Hector Alex. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. University of Duke; Estados UnidosFil: Carpenter, Victoria K.. Duke University Medical Center; . University of Duke; Estados UnidosFil: Richards, Kristian L.. Miami University; Estados UnidosFil: Plano, Gregory V.. Miami University; Estados UnidosFil: Valdivia, Raphael H.. University of Duke; Estados Unido

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating

    Get PDF
    Electrically controllable magnetism, which requires the field-effect manipulation of both charge and spin degrees of freedom, has attracted growing interests since the emergence of spintronics. In this work, we report the reversible electrical switching of ferromagnetic (FM) states in platinum (Pt) thin films by introducing paramagnetic ionic liquid (PIL) as the gating media. The paramagnetic ionic gating controls the movement of ions with magnetic moments, which induces itinerant ferromagnetism on the surface of Pt films with large coercivity and perpendicular anisotropy mimicking the ideal two-dimensional Ising-type FM state. The electrical transport of the induced FM state shows Kondo effect at low temperature suggesting spatially separated coexistence of Kondo scattering beneath the FM interface. The tunable FM state indicates that paramagnetic ionic gating could serve as a versatile method to induce rich transport phenomena combining field effect and magnetism at PIL-gated interfaces.Comment: 17 pages, 4 figure

    Fabrication and superconductivity of NaxTaS2 crystals

    Full text link
    In this paper we report the growth and superconductivity of NaxTaS2Na_xTaS_2 crystals. The structural data deduced from X-ray diffraction pattern shows that the sample has the same structure as 2H−TaS22H-TaS_2. A series of crystals with different superconducting transition temperatures (TcT_c) ranging from 2.5 K to 4.4 K were obtained. It is found that the TcT_c rises with the increase of NaNa content determined by Energy-Dispersive x-ray microanalysis(EDX) of Scanning Electron Microscope (SEM) on these crystals. Compared with the resistivity curve of un-intercalated sample 2H−TaS22H-TaS_2 (TcT_c = 0.8 K, TCDW≈T_{CDW} \approx 70 K), no signal of charge density wave (CDW) was observed in samples Na0.1TaS2Na_{0.1}TaS_2 and Na0.05TaS2Na_{0.05}TaS_2. However, in some samples with lower TcT_c, the CDW appears again at about 65 K. Comparison between the anisotropic resistivity indicates that the anisotropy becomes smaller in samples with more NaNa intercalation (albeit a weak semiconducting behavior along c-axis) and thus higher TcT_c. It is thus concluded that there is a competition between the superconductivity and the CDW. With the increase of sodium content, the rise of TcT_c in NaxTaS2Na_xTaS_2 is caused mainly by the suppression to the CDW in 2H−TaS22H-TaS_2, and the conventional rigid band model for layered dichalcogenide may be inadequate to explain the changes induced by the slight intercalation of sodium in 2H−TaS22H-TaS_2.Comment: 8 pages, 13 figures, To appear in Physical Review
    • …
    corecore