9,033 research outputs found

    Role of acupuncture in the management of severe acquired brain injuries (sABIs)

    Get PDF
    Acupuncture therapy has been used to treat several disorders in Asian countries and its use is increasing in Western countries as well. Current literature assessed the safety and efficacy of acupuncture in the acute management and rehabilitation of patients with neurologic disorders. In this paper, the role of acupuncture in the treatment of acute severe acquired brain injuries is described, acting on neuroinflammation, intracranial oedema, oxidative stress, and neuronal regeneration. Moreover, beneficial effects of acupuncture on subacute phase and chronic outcomes have been reported in controlling the imbalance of IGF-1 hormone and in decreasing spasticity, pain, and the incidence of neurovegetative crisis. Moreover, acupuncture may have a positive action on the arousal recovery. Further work is needed to understand the effects of specific acupoints on the brain. Allegedly concurrent neurophysiological measurements (e.g., EEG) may help in studying acupuncture-related changes in central nervous system activity and determining its potential as an add-on rehabilitative treatment for patients with consciousness disorders

    Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings

    Get PDF
    On 24 August 2006, a debris flow took place in the Moscardo Torrent, a basin of the Eastern Italian Alps instrumented for debris-flow monitoring. The debris flow was recorded by two seismic networks located in the lower part of the basin and on the alluvial fan, respectively. The event was also recorded by a pair of ultrasonic sensors installed on the fan, close to the lower seismic network. The comparison between the different recordings outlines particular features of the August 2006 debris flow, different from that of events recorded in previous years. A typical debris-flow wave was observed at the upper seismic network, with a main front abruptly appearing in the torrent, followed by a gradual decrease of flow height. On the contrary, on the alluvial fan the wave displayed an irregular pattern, with low flow depth and the main peak occurring in the central part of the surge both in the seismic recording and in the hydrographs. Recorded data and field evidences indicate that the surge observed on the alluvial fan was not a debris flow, and probably consisted in a water surge laden with fine to medium-sized sediment. The change in shape and characteristics of the wave can be ascribed to the attenuation of the surge caused by the torrent control works implemented in the lower basin during the last years

    Measurement of Dielectric Suppression of Bremsstrahlung

    Full text link
    In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy photons in a medium is suppressed because of interactions between the produced photon and the electrons in the medium. This suppression occurs because the emission takes place over on a long distance scale, allowing for destructive interference between different instantaneous photon emission amplitudes. We present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data shows that dielectric suppression occurs at the predicted level, reducing the cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e

    Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps

    Get PDF
    Abstract. Alluvial fans are often present at the outlet of small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and debris flows. Alluvial fans are preferred sites for human settlements and are frequently crossed by transport routes. In order to reduce the risk for economic activities located on or near the fan and prevent loss of lives due to floods and debris flows, torrent control works have been extensively carried out on many alpine alluvial fans. Hazard management on alluvial fans in alpine regions is dependent upon reliable procedures to evaluate variations in the frequency and severity of hydrogeomorphic processes and the long-term performance of the torrent training works. An integrated approach to the analysis of hydrogeomorphic processes and their interactions with torrent control works has been applied to a large alluvial fan in the southern Carnic Alps (northeastern Italy). Study methods encompass field observations, interpretation of aerial photographs, analysis of historical documents, and numerical modelling of debris flows. The overall performance of control works implemented in the early decades of 20th century was satisfactory, and a reduction of hazardous events was recognised from features observed in the field and in aerial photographs, as well as from the analysis of historical records. The 2-D simulation of debris flows confirms these findings, indicating that debris flow deposition would not affect urban areas or main roads, even in the case of a high-magnitude event. Present issues in the management of the studied alluvial fan are representative of situations frequently found in the European Alps and deal with the need for maintenance of the control structures and the pressures for land use changes aimed at the economic exploitation of the fan surface

    Cultural and biological evolutionary processes: gene-culture disequilibrium.

    Full text link

    Search for the radion using the ATLAS detector

    Get PDF
    The possibility of observing the radion using the ATLAS detector at LHC is investigated. Studies on searches for the Standard Model Higgs with the ATLAS detector are re-interpreted to obtain limits on radion decay to gamma-gamma and ZZ(*). The observability of radion decays into Higgs pairs, which subsequently decay into gamma-gamma+b-bbar or tau-tau+b-bbar is then estimate

    Dysphonia secondary to traumatic avulsion of the vocal fold in infants

    Get PDF
    Objective: Airway compromise due to paediatric intubation injuries is well documented; however, intubation injuries may also cause severe voice disorders. We report our experience and review the world literature on the voice effects of traumatic paediatric intubation. Case series: We report five cases of children referred to Great Ormond Street Hospital for Children who suffered traumatic avulsion of the vocal fold at the time of, or secondary to, endotracheal intubation. All children had significant dysphonia and underwent specialist voice therapy. Conclusions: The mechanisms of injury, risk factors and management of the condition are discussed. Children suffering traumatic intubation require follow up throughout childhood and beyond puberty as their vocal needs and abilities change. At the time of writing, none of the reported patients had yet undergone reconstructive or medialisation surgery. However, regular specialist voice therapy evaluation is recommended for such patients, with consideration of phonosurgical techniques including injection laryngoplasty or thyroplasty

    Spin-orbit-enhanced Wigner localization in quantum dots

    Full text link
    We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum dots. Recurring shapes in the pair-correlated densities of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported.Comment: 5 pages, 4 figure

    Gpr126/Adgrg6 has Schwann cell autonomous and nonautonomous functions in peripheral nerve injury and repair

    Get PDF
    Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury

    Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency

    Get PDF
    We describe the colloidal hot-injection synthesis of phase-pure nanocrystals (NCs) of a highly abundant mineral, chalcopyrite (CuFeS2). Absorption bands centered at around 480 and 950 nm, spanning almost the entire visible and near infrared regions, encompass their optical extinction characteristics. These peaks are ascribable to electronic transitions from the valence band (VB) to the empty intermediate band (IB), located in the fundamental gap and mainly composed of Fe 3d orbitals. Laser-irradiation (at 808 nm) of an aqueous suspension of CuFeS2 NCs exhibited significant heating, with a photothermal conversion efficiency of 49%. Such efficient heating is ascribable to the carrier relaxation within the broad IB band (owing to the indirect VB-IB gap), as corroborated by transient absorption measurements. The intense absorption and high photothermal transduction efficiency (PTE) of these NCs in the so-called biological window (650-900 nm) makes them suitable for photothermal therapy as demonstrated by tumor cell annihilation upon laser irradiation. The otherwise harmless nature of these NCs in dark conditions was confirmed by in vitro toxicity tests on two different cell lines. The presence of the deep Fe levels constituting the IB is the origin of such enhanced PTE, which can be used to design other high performing NC photothermal agents.Comment: 12 pages, Chemistry of Materials, 31-May-201
    • …
    corecore