38 research outputs found

    A Calsequestrin-1 mutation associated with a skeletal muscle disease alters sarcoplasmic Ca2+ release

    Get PDF
    An autosomal dominant protein aggregate myopathy, characterized by high plasma creatine kinase and calsequestrin-1 (CASQ1) accumulation in skeletal muscle, has been recently associated with a missense mutation in CASQ1 gene. The mutation replaces an evolutionarily-conserved aspartic acid with glycine at position 244 (p.D244G) of CASQ1, the main sarcoplasmic reticulum (SR) Ca2+ binding and storage protein localized at the terminal cisternae of skeletal muscle cells. Here, immunocytochemical analysis of myotubes, differentiated from muscle-derived primary myoblasts, shows that sarcoplasmic vacuolar aggregations positive for CASQ1 are significantly larger in CASQ1-mutated cells than control cells. A strong co-immuno staining of both RyR1 and CASQ1 was also noted in the vacuoles of myotubes and muscle biopsies derived from patients. Electrophysiological recordings and sarcoplasmic Ca2+ measurements provide evidence for less Ca2+ release from the SR of mutated myotubes when compared to that of controls. These findings further clarify the pathogenic nature of the p.D244G variant and point out defects in sarcoplasmic Ca2+ homeostasis as a mechanism underlying this human disease, which could be distinctly classified as "CASQ1-couplonopathy".peer-reviewe

    Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Get PDF
    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (INaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of INaT and a decrease of potassium currents, especially slowly inactivating potassium currents (IAS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of INaT and total potassium current as well as IAS currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN

    Binding and selectivity in L-type calcium channels: a mean spherical approximation.

    Get PDF
    L-type calcium channels are Ca(2+) binding proteins of great biological importance. They generate an essential intracellular signal of living cells by allowing Ca(2+) ions to move across the lipid membrane into the cell, thereby selecting an ion that is in low extracellular abundance. Their mechanism of selection involves four carboxylate groups, containing eight oxygen ions, that belong to the side chains of the "EEEE" locus of the channel protein, a setting similar to that found in many Ca(2+)-chelating molecules. This study examines the hypothesis that selectivity in this locus is determined by mutual electrostatic screening and volume exclusion between ions and carboxylate oxygens of finite diameters. In this model, the eight half-charged oxygens of the tethered carboxylate groups of the protein are confined to a subvolume of the pore (the "filter"), but interact spontaneously with their mobile counterions as ions interact in concentrated bulk solutions. The mean spherical approximation (MSA) is used to predict ion-specific excess chemical potentials in the filter and baths. The theory is calibrated using a single experimental observation, concerning the apparent dissociation constant of Ca(2+) in the presence of a physiological concentration of NaCl. When ions are assigned their independently known crystal diameters and the carboxylate oxygens are constrained, e.g., to a volume of 0.375 nm(3) in an environment with an effective dielectric coefficient of 63.5, the hypothesized selectivity filter produces the shape of the calcium binding curves observed in experiment, and it predicts Ba(2+)/Ca(2+) and Na(+)/Li(+) competition, and Cl(-) exclusion as observed. The selectivities for Na(+), Ca(2+), Ba(2+), other alkali metal ions, and Cl(-) thus can be predicted by volume exclusion and electrostatic screening alone. Spontaneous coordination of ions and carboxylates can produce a wide range of Ca(2+) selectivities, depending on the volume density of carboxylate groups and the permittivity in the locus. A specific three-dimensional structure of atoms at the binding site is not needed to explain Ca(2+) selectivity

    Frog saccular hair cells dissociated with protease VIII exhibit inactivating BK currents, K(V) currents, and low-frequency electrical resonance.

    No full text
    Outward K currents and electrical resonance of frog (Rana esculenta) saccular hair cells isolated enzymatically with bacterial protease VIII were investigated using the perforated patch-clamp method. Under voltage-clamp conditions we identified two K currents, a voltage-dependent K (K(V)) current, and a partially inactivating iberiotoxin-sensitive K (BK) current. The K(V) current activated at a membrane potential of approximately -50 mV (from a holding potential of -70 mV). Its activation rate was rather slow, having a time constant in the range 5-8 ms at 0 mV. The K(V) current was resistant to tetraethylammonium (10 mM), but was inhibited by 4-aminopyridine (1 mM). A striking feature of the BK current was its inactivation; this was monoexponential and had fast kinetics (tau(inact)=2.7 ms +/-1.2, at -10 mV; n=8). Inactivation of the current was incomplete, a residual sustained component remaining. This varied considerably among hair cells (mean ratio between peak transient and sustained component was 1.22+/-0.18, range 0.53-1.8; n=8). In current-clamp mode steady depolarizing current pulses evoked membrane potential oscillatory responses, with mean frequencies varying between 30 and 100 Hz for membrane potentials from -60 to -40 mV (n=18). Most hair cells (14/18) exhibited damped oscillations, and in the remainder a few initial damped oscillations were succeeded by smaller, undamped voltage oscillations. The peak quality factor and the characteristic frequency assessed on 14 cells displaying only damped oscillatory responses were 2.4+/-1.3 and 59+/-39 Hz, respectively. In contrast, papain-dissociated frog saccular hair cells possess solely a sustained BK current, and exhibited significantly higher resonant frequencies and quality factors. In conclusion, the K currents and the electrical resonance of hair cells dissociated in protease VIII differ markedly from those dissociated with papain, but are similar to those reported for in situ preparations, suggesting that our dissociation procedure preserves the electrophysiological profile of in situ frog saccular hair cells

    Histamine activates a background, arachidonic acid-sensitive K channel in embryonic chick dorsal root ganglion neurons

    No full text
    Histamine has been proposed to be an important modulator of developing neurons, but its mechanism of action remains unclear. In embryonic chick dorsal root ganglion neurons we found that histamine activates, through the pyrilamine-sensitive H-1 receptor, a K-selective, background channel. The K channel activated by histamine was also activated by arachidonic acid in a dose-dependent way, with a K-D of 4 muM and a slope of 2.5, had a unitary conductance of about 150 pS (symmetrical 140 KCI) and a moderate voltage dependence. The channel was insensitive to the classical K channel blockers tetraethylammonium, charybdotoxin, 4-aminopyridine, but inhibited by millimolar Ba2+. Channel activity could also be increased by lowering the intracellular pH from 7.2 to 5.5, or by applying negative pressure pulses through the patch pipette. Experiments aimed at delineating the metabotropic pathway leading to K channel activation by histamine indicated the involvement of a pertussis toxin-insensitive G protein, and a quinacrine-sensitive cytosolic phospholipase A(2). The histamine-induced K channel activation was observed only with elevated internal Ca2+ (achieved using 0.5 muM ionomycin or elevated external KCI). An increase in the histamine-induced phosphoinositide hydrolysis was also observed upon internal Ca2+ elevation, showing the presence of a Ca2+ dependent step upstream to inositol 1,4,5-triphosphate production. In view of the functional importance of K conductances during cell differentiation, we propose that histamine activation of this K channel may have a significant role during normal development of embryonic chick neurons. (C) 2004 Published by Elsevier Ltd on behalf of IBRO

    Mechanisms of verapamil inhibition of action potential firing in rat intracardiac ganglion neurons

    No full text
    The effects of verapamil and related phenylalkylamines on neuronal excitability were investigated in isolated neurons of rat intracardiac ganglia using whole-cell perforated patch-clamp recording. Verapamil (greater than or equal to 10 mu M) inhibits tonic firing observed in response to depolarizing current pulses at 22 degrees C. The inhibition of discharge activity is not due to block of voltage-dependent Ca2+ channels because firing is not affected by 100 mu M Cd2+. The K+ channel inhibitors charybdotoxin (100 nM), 4-aminopyridine (0.5 mM), apamin (30-100 nM), and tetraethylammonium ions (1 mM) also have no effect on firing behavior at 22 degrees C. Verapamil does not antagonize the acetylcholine-induced inhibition of the muscarine-sensitive K+ current (M-current) in rat intracardiac neurons. Verapamil inhibits the delayed outwardly rectifying K+ current with an IC50 value of 11 mu M, Which is approximately 7-fold more potent than its inhibition of high voltage-activated Ca2+ channel currents. These data suggest that verapamil inhibits tonic firing in rat intracardiac neurons primarily via inhibition of delayed outwardly rectifying K+ current. Verapamil inhibition of action potential firing in intracardiac neurons may contribute, in part, to verapamil-induced tachycardia
    corecore