1,430 research outputs found

    Converse Magnetoelectric Experiments on a Room Temperature Spirally Ordered Hexaferrite

    Full text link
    Experiments have been performed to measure magnetoelectric properties of room temperature spirally ordered Sr3Co2Fe24O41 hexaferrite slabs. The measured properties include the magnetic permeability, the magnetization and the strain all as a function of the electric field E and the magnetic intensity H. The material hexaferrite Sr3Co2Fe24O41 exhibits broken symmetries for both time reversal and parity. The product of the two symmetries remains unbroken. This is the central feature of these magnetoelectric materials. A simple physical model is proposed to explain the magnetoelectric effect in these materials.Comment: 6 pages, 5 figure

    Magnetic fields generated by r-modes in accreting millisecond pulsars

    Get PDF
    In millisecond pulsars the existence of the Coriolis force allows the development of the so-called Rossby oscillations (r-modes) which are know to be unstable to emission of gravitational waves. These instabilities are mainly damped by the viscosity of the star or by the existence of a strong magnetic field. A fraction of the observed millisecond pulsars are known to be inside Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black hole) is accreting from a donor whose mass is smaller than 1 MM_\odot. Here we show that the r-mode instabilities can generate strong toroidal magnetic fields by inducing differential rotation. In this way we also provide an alternative scenario for the origin of the magnetars.Comment: 6 pages, 3 figures, Proceedings conference "Theoretical Nuclear Physics", Cortona October 200

    Reduction of C-reactive protein and the use of anti-hypertensives

    Get PDF
    Inflammatory processes are increasingly recognized as important participants in the pathophysiology of hypertension and cardiovascular disease. Angiotensin II may be to a large degree responsible for triggering vascular inflammation by inducing oxidative stress, resulting in up-regulation of inflammatory mediators. Inflammatory markers such as C-reactive protein are increased in the blood of patients with hypertension and predict the development of cardiovascular disease. Moreover, C-reactive protein may be a pro-inflammatory molecule under certain circumstances. C-reactive protein and high blood pressure in combination have additional predictive value for cardiovascular outcomes, as they contribute as independent determinants of cardiovascular risk. Therapeutic intervention aimed to reduce vascular inflammation in hypertensive patients has been proposed. Recent lines of evidence suggest that lifestyle modification and pharmacological approaches may reduce blood pressure and inflammation in patients with hypertension. Antagonism of the renin-angiotensin system with the selective angiotensin receptor blockers may improve cardiovascular outcome beyond blood pressure control, by reducing vascular inflammation and remodeling

    Differential neuropsychological profiles in Parkinsonian patients with or without vascular lesions.

    Get PDF
    The purpose of this study is to compare the neuropsychological profile of patients affected by parkinsonism and vascular lesions to that in patients with PD alone (PD) and to evaluate whether the brain vascular lesion load is associated with neuropsychological variables. Thirty-six nondemented patients with parkinsonism were divided into 3 groups of 12 patients each, according to both clinical history and the presence of brain vascular lesions and/or dopaminergic denervation as revealed by magnetic resonance and dopamine transporter imaging, respectively. The first group had vascular lesions without dopaminergic denervation (VP group); the second group had vascular lesions and dopaminergic denervation (DD) (VP+DD group); and the third group consisted of patients with dopaminergic denervation (PD group) without vascular lesions. All patients underwent neurological and neuropsychological assessments. The groups differed in disease duration, age at onset, and cerebrovascular risk factors. The VP and VP+DD groups performed worse than the PD group on frontal/executive tasks. Regardless of the presence of dopaminergic denervation, cerebrovascular lesions in hemispheric white matter, basal ganglia, and cerebellum have an important effect in determining early onset and severity of cognitive impairment in patients with parkinsonism

    Generation of strong magnetic fields by r-modes in millisecond accreting neutron stars: induced deformations and gravitational wave emission

    Full text link
    Differential rotation induced by the r-mode instability can generate very strong toroidal fields in the core of accreting, millisecond spinning neutron stars. We introduce explicitly the magnetic damping term in the evolution equations of the r-modes and solve them numerically in the Newtonian limit, to follow the development and growth of the internal magnetic field. We show that the strength of the latter can reach large values, B1014B \sim 10^{14} G, in the core of the fastest accreting neutron stars. This is strong enough to induce a significant quadrupole moment of the neutron star mass distribution, corresponding to an ellipticity |\epsilon_B}| \sim 10^{-8}. If the symmetry axis of the induced magnetic field is not aligned with the spin axis, the neutron star radiates gravitational waves. We suggest that this mechanism may explain the upper limit of the spin frequencies observed in accreting neutron stars in Low Mass X-Ray Binaries. We discuss the relevance of our results for the search of gravitational waves.Comment: 11 pages, 8 figure

    Absence of anomalous interactions in the quantum theory of constrained charged particles in presence of electrical currents

    Full text link
    The experimental progress in synthesizing low-dimensional nanostructures where carriers are confined to bent surfaces has boosted the interest in the theory of quantum mechanics on curved two-dimensional manifolds. It was recently asserted that constrained electrically charged particles couple to a term linear in A_3 M, where A_3 is the transversal component of the electromagnetic vector potential and M the surface mean curvature, thereby making a dimensional reduction procedure impracticable in the presence of fields. Here we resolve this apparent paradox by providing a consistent general framework of the thin-wall quantization procedure. We also show that the separability of the equation of motions is not endangered by the particular choice of the constraint imposed on the transversal fluctuations of the wavefunction, which renders the thin-wall quantization procedure well-founded. It can be applied without restrictions.Comment: 4 page

    Electronic Transport in the Oxygen Deficient Ferromagnetic Semiconducting TiO2δ_{2-\delta}

    Full text link
    TiO2δ_{2-\delta} films were deposited on (100) Lanthanum aluminates LaAlO3_{3} substrates at a very low oxygen chamber pressure P0.3P\approx 0.3 mtorr employing a pulsed laser ablation deposition technique. In previous work, it was established that the oxygen deficiency in these films induced ferromagnetism. In this work it is demonstrated that this same oxygen deficiency also gives rise to semiconductor titanium ion impurity donor energy levels. Transport resistivity measurements in thin films of TiO2δ_{2-\delta} are presented as a function of temperature and magnetic field. Magneto- and Hall- resistivity is explained in terms of electronic excitations from the titanium ion donor levels into the conduction band.Comment: RevTeX4, Four pages, Four Figures in ^.eps forma
    corecore