5 research outputs found

    Strategies of data layout and cache writing for input-output optimization in high performance scientific computing: Applications to the forward electrocardiographic problem

    No full text
    Input-output (I/O) optimization at the low-level design of data layout on disk drastically impacts the efficiency of high performance computing (HPC) applications. However, such a low-level optimization is in general challenging, especially when using popular scientific file formats designed with an emphasis on portability and flexibility. To reconcile these two aspects, we present a novel low-level data layout for HPC applications, fully independent of the number of dimensions in the dataset. The new data layout improves reading and writing efficiency in large HPC applications using many processors, and in particular during parallel post-processing. Furthermore, its combination with a cached write mode, in order to aggregate multiple writes into larger ones, substantially decreased the writing times of the proposed strategy. When applied to our simulation framework for the forward calculation of the human electrocardiogram, the combined strategy resulted in drastic improvements in I/O performance, of up to 40% in writing and 93–98% in reading for post-processing tasks. Given the generality of the proposed strategies and scientific file formats used, our results may represent significant improvements in I/O performance of HPC applications across multiple disciplines, reducing execution and post-processing times and leading to a more efficient use of HPC resource envelopes

    Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions

    Get PDF
    Aims To investigate how variability in activation sequence and passive conduction properties translates into clinical variability in QRS biomarkers, and gain novel physiological knowledge on the information contained in the human QRS complex. Methods Multiscale bidomain simulations using a detailed heart-torso human anatomical model are performed to investigate the impact of activation sequence characteristics on clinical QRS biomarkers. Activation sequences are built and validated against experimentally-derived ex-vivo and in-vivo human activation data. 8 Results R-peak amplitude exhibits the largest variability in terms of QRS morphology, due to its simultaneous modulation by activation sequence speed, myocardial intracellular and extracellular conductivities, and propagation through the human torso. QRS width however is regulated by endocardial activation speed and intracellular myocardial conductivities, whereas QR intervals are only affected by the endocardial activation profile. Variability in the apico-basal location of activation sites on the anterior and posterior left ventricular wall is associated with S-wave progression in limb and precordial leads, respectively, and occasional notched QRS complexes in precordial derivations. Variability in the number of early activation sites successfully reproduces pathological abnormalities of the human conduction system in the QRS complex. Conclusion Variability in activation sequence and passive conduction properties captures and explains a large part of the clinical variability observed in the human QRS complex. Our physiological insights allow for a deeper interpretation of human QRS biomarkers in terms of QRS morphology and location of early endocardial activation sites. This might be used to attain a better patient-specific knowledge of activation sequence from routine body-surface electrocardiograms.</p

    A computational investigation into the effect of infarction on clinical human electrophysiology biomarkers

    No full text
    The electrocardiogram (ECG) is often used to diagnose myocardial infarction, but sensitivity and specificity are low. Here we present a computational framework for solving the bidomain equations over an image-based human geometry and simulating the 12 lead ECG. First, we demonstrate this approach by evaluating a population of eight models with varying distributions of local action potential duration, and report that only the model with apicobasal and inter-ventricular heterogeneities produces concordant T waves. Second, we simulate the effects of an old anterior infarct, which causes a reduction in T wave amplitude and width. Our methodology can contribute to the understanding of ECG alterations under challenging conditions for clinical diagnosis

    MRI-based heart and torso personalization for computer modeling and simulation of cardiac electrophysiology

    No full text
    In the last decade, electrophysiological models for in-silico simulations of cardiac electrophysiology have gained much attention in the research field. However, to translate them to clinical uses, the models need personalization based on recordings from the patient. In this work, we explore methodologies for the patient-specific personalization of torso and heart geometric models based on standard clinical cardiac magnetic resonance acquisitions to enable simulations. The inclusion of the torso and its internal structures allows simulations of the human ventricular electrophysiological activity from the ionic level to the body surface potentials and to the electrocardiogram
    corecore