78,943 research outputs found
The Relativistic Rotation
The classical rotation is not self-consistent in the framework of the special
theory of relativity. the Relativistic rotation is obtained, which takes the
relativistic effect into account. It is demonstrated that the angular frequency
of classical rotation is only valid in local approximation. The properties of
the relativistic rotation and the relativistic transverse Doppler shift are
discussed in this work
A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems
The hierarchical equations of motion technique has found widespread success
as a tool to generate the numerically exact dynamics of non-Markovian open
quantum systems. However, its application to low temperature environments
remains a serious challenge due to the need for a deep hierarchy that arises
from the Matsubara expansion of the bath correlation function. Here we present
a hybrid stochastic hierarchical equation of motion (sHEOM) approach that
alleviates this bottleneck and leads to a numerical cost that is nearly
independent of temperature. Additionally, the sHEOM method generally converges
with fewer hierarchy tiers allowing for the treatment of larger systems.
Benchmark calculations are presented on the dynamics of two level systems at
both high and low temperatures to demonstrate the efficacy of the approach.
Then the hybrid method is used to generate the exact dynamics of systems that
are nearly impossible to treat by the standard hierarchy. First, exact energy
transfer rates are calculated across a broad range of temperatures revealing
the deviations from the Forster rates. This is followed by computations of the
entanglement dynamics in a system of two qubits at low temperature spanning the
weak to strong system-bath coupling regimes.Comment: 20 pages, 6 figure
Quantum -core conduction on the Bethe lattice
Classical and quantum conduction on a bond-diluted Bethe lattice is
considered. The bond dilution is subject to the constraint that every occupied
bond must have at least neighboring occupied bonds, i.e. -core
diluted. In the classical case, we find the onset of conduction for is
continuous, while for , the onset of conduction is discontinuous with the
geometric random first-order phase transition driving the conduction
transition. In the quantum case, treating each occupied bond as a random
scatterer, we find for that the random first-order phase transition in
the geometry also drives the onset of quantum conduction giving rise to a new
universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig
Optical control of the spin state of two Mn atoms in a quantum dot
We report on the optical spectroscopy of the spin of two magnetic atoms (Mn)
embedded in an individual quantum dot interacting with either a single
electron, a single exciton and single trion. As a result of their interaction
to a common entity, the Mn spins become correlated. The dynamics of this
process is probed by time resolved spectroscopy, that permits to determine the
optical orientation time in the range of a few tens of . In addition, we
show that the energy of the collective spin states of the two Mn atoms can be
tuned through the optical Stark effect induced by a resonant laser field
Medium polarization in asymmetric nuclear matter
The influence of the core polarization on the effective nuclear interaction
of asymmetric nuclear matter is calculated in the framework of the induced
interaction theory. The strong isospin dependence of the density and spin
density fluctuations is studied along with the interplay between the neutron
and proton core polarizations. Moving from symmetric nuclear matter to pure
neutron matter the crossover of the induced interaction from attractive to
repulsive in the spin singlet state is determined as a function of the isospin
imbalance.The density range in which it occurs is also determined. For the spin
triplet state the induced interaction turns out to be always repulsive. The
implications of the results for the neutron star superfluid phases are shortly
discussed.Comment: 6 pages, 4 figure
- …
