343 research outputs found

    Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity

    Get PDF
    Although the accumulation of the neurotoxic peptide {beta} amyloid ({beta}A) in the CNS is a hallmark of Alzheimer's disease, the mechanism of {beta}A neurotoxicity remains controversial. In cultures of mixed neurons and astrocytes, we found that both the full-length peptide {beta}A (1–42) and the neurotoxic fragment (25–35) caused sporadic cytoplasmic calcium [intracellular calcium ([Ca2+]c)] signals in astrocytes that continued for hours, whereas adjacent neurons were completely unaffected. Nevertheless, after 24 hr, although astrocyte cell death was marginally increased, ~50% of the neurons had died. The [Ca2+]c signal was entirely dependent on Ca2+ influx and was blocked by zinc and by clioquinol, a heavy-metal chelator that is neuroprotective in models of Alzheimer's disease. Neuronal death was associated with Ca2+-dependent glutathione depletion in both astrocytes and neurons. Thus, astrocytes appear to be the primary target of {beta}A, whereas the neurotoxicity reflects the neuronal dependence on astrocytes for antioxidant support

    β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase

    Get PDF
    β-Amyloid (βA) peptide is strongly implicated in the neurodegeneration underlying Alzheimer's disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of βA-induced neuronal death. βA causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitochondrial response consists of Ca2+-dependent transient depolarizations superimposed on a slow collapse of potential. The slow response is both prevented by antioxidants and, remarkably, reversed by provision of glutamate and other mitochondrial substrates to complexes I and II. These findings suggest that the depolarization reflects oxidative damage to metabolic pathways upstream of mitochondrial respiration. Inhibition of NADPH oxidase by diphenylene iodonium or 4-hydroxy-3-methoxy-acetophenone blocks βA-induced reactive oxygen species generation, prevents the mitochondrial depolarization, prevents βA-induced glutathione depletion in both neurons and astrocytes, and protects neurons from cell death, placing the astrocyte NADPH oxidase as a primary target of βA-induced neurodegeneration

    Expression and modulation of an NADPH oxidase in mammalian astrocytes

    Get PDF
    Amyloid β peptides generate oxidative stress in hippocampal astrocytes through a mechanism sensitive to inhibitors of the NADPH oxidase [diphenylene iodonium (DPI) and apocynin]. Seeking evidence for the expression and function of the enzyme in primary hippocampal astrocytes, we confirmed the expression of the subunits of the phagocyte NADPH oxidase by Western blot analysis and by immunofluorescence and coexpression with the astrocyte-specific marker glial fibrillary acidic protein both in cultures and in vivo. Functional assays using lucigenin luminescence, dihydroethidine, or dicarboxyfluorescein fluorescence to measure the production of reactive oxygen species (ROS) demonstrated DPI and apocynin-sensitive ROS generation in response to the phorbol ester PMA and to raised [Ca2+]c after application of ionomycin or P2u receptor activation. Stimulation by PMA but not Ca2+ was inhibited by the protein kinase C (PKC) inhibitors staurosporine and hispidin. Responses were absent in transgenic mice lacking gp91phox. Expression of gp91phox and p67phox was increased in reactive astrocytes, which showed increased rates of both resting and stimulated ROS generation. NADPH oxidase activity was modulated by intracellular pH, suppressed by intracellular alkalinization, and enhanced by acidification. The protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone suppressed basal ROS generation but markedly increased PMA-stimulated ROS generation. This was independent of mitochondrial ROS production, because it was unaffected by mitochondrial depolarization with rotenone and oligomycin. Thus, the NADPH oxidase is expressed in astrocytes and is functional, activated by PKC and intracellular calcium, modulated by pHi, and upregulated by astrocyte activation. The astrocytic NADPH oxidase is likely to play important roles in CNS physiology and pathology

    Modeling speech imitation and ecological learning of auditory-motor maps.

    Get PDF
    Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR) side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers' peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to "recover" motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy slightly but significantly outperforms all other strategies where only acoustics is taken into account

    Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarianumour cell line

    Get PDF
    We investigated whether the efficacy of fenretinide (HPR) against ovarian tumours may be limited by induction of resistance. The human ovarian carcinoma cell line A2780, which is sensitive to a pharmacologically achievable HPR concentration (IC 50= 1 μM), became 10-fold more resistant after exposure to increasing HPR concentrations. The cells (A2780/HPR) did not show cross-resistance to the synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and were not sensitive, similarly to the parent line, to all- trans -retinoic acid, 13- cis -retinoic acid or N-(4-methoxyphenyl)retinamide. A2780/HPR cells showed, compared to parental cells, a 3-fold reduction in colony-forming ability in agar. The development of HPR resistance was associated with a marked increase in retinoic acid receptor β (RARβ) mRNA and protein levels, which decreased, together with drug resistance, after drug removal. The expression of cell surface molecules associated with tumour progression including HER-2, laminin receptor and β1 integrin was markedly reduced. The increase in the levels of reactive oxygen species is not involved in HPR-resistance because it was similar in parental and resistant cells. Conversely differences in pharmacokinetics may account for resistance because, in A2780/HPR cells, intracellular peak drug levels were 2 times lower than in A2780 cells and an as yet unidentified polar metabolite was present. These data suggest that acquired resistance to HPR is associated with changes in marker expression, suggestive of a more differentiated status and may be explained, at least in part, by reduced drug accumulation and increased metabolism. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Mining of self-organizing map gene-expression portraits reveals prognostic stratification of HPV-positive head and neck squamous cell carcinoma

    Get PDF
    Patients (pts) with head and neck squamous cell carcinoma (HNSCC) have different epidemiologic, clinical, and outcome behaviors in relation to human papillomavirus (HPV) infection status, with HPV-positive patients having a 70% reduction in their risk of death. Little is known about the molecular heterogeneity in HPV-related cases. In the present study, we aim to disclose the molecular subtypes with potential biological and clinical relevance. Through a literature review, 11 studies were retrieved with a total of 346 gene-expression data points from HPV-positive HNSCC pts. Meta-analysis and self-organizing map (SOM) approaches were used to disclose relevant meta-gene portraits. Unsupervised consensus clustering provided evidence of three biological subtypes in HPV-positive HNSCC: Cl1, immune-related; Cl2, epithelial\u2013mesenchymal transition-related; Cl3, proliferation-related. This stratification has a prognostic relevance, with Cl1 having the best outcome, Cl2 the worst, and Cl3 an intermediate survival rate. Compared to recent literature, which identified immune and keratinocyte subtypes in HPV-related HNSCC, we confirmed the former and we separated the latter into two clusters with different biological and prognostic characteristics. At present, this paper reports the largest meta-analysis of HPV-positive HNSCC studies and offers a promising molecular subtype classification. Upon further validation, this stratification could improve patient selection and pave the way for the development of a precision medicine therapeutic approach

    New transcriptional-based insights into the pathogenesis of desmoplastic small round cell tumors (DSRCTs).

    Get PDF
    To gain new insights into desmoplastic small round cell tumors (DSRCTs) by means of gene expression profiling (GEP). Formalin-fixed, paraffin-embedded surgical specimens obtained from seven pretreated DSRCT patients were interrogated using GEP complemented by immunohistochemistry, a cancer stem cell array, and miRNA in situ hybridisation, including the combined chimera modules miRNA-200/ZEB1 and miRNA-34/SLUG. The chimera modules divided the cases into three classes that respectively recapitulated the traits of mesenchymal epithelial reverse transition (MErT), epithelial mesenchymal transition (EMT), and hybrid/partial EMT. This indicates a close correlation between the reprogramming governed by EMT regulators and DSRCT biology, which was further confirmed by miRNA-21 and is consistent with the broad morphological spectrum of DSRCTs. Starting from the miRNA-200/ZEB1 axis, we also found that DSRCTs carry a signature of immunological ignorance that is not responsive to PD--L1 blockade. Evidence that the up-regulation of miRNA-200 and E-cadherin, and quite a high level of miRNA-21 expression segregate with the MErT supports the idea that, in addition to the hybrid/partial state, MErT is also enriched in stemness: the androgen-positive cases, whose stemness traits were confirmed by stem cell arrays, all fell into these two classes. Our findings also confirmed that tumoral cell PDGFRA expression correlates with desmoplasia, and demonstrated the co-expression of PDGFRA and ISLR/Meflin, another marker of pluripotency. Despite the limited number of cases, these findings provide unexpectedly relevant information concerning the pathogenesis of DSRCTs, and prove the validity of miRNA-based chimera circuit modelling in the clinico-pathological setting

    Biological aspects of Eriopis connexa (Germar) (Coleoptera: Coccinellidae) fed on different insect pests of maize (Zea mays L.) and sorghum [Sorghum bicolor L. (Moench.)].

    Get PDF
    Eriopis connexa (Germar) (Coleoptera: Coccinellidae) occurs in several countries of South America and its mass rearing is important for biological control programmes. This work evaluated biological aspects of E. connexa larva fed on eggs of Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) frozen for one day, fresh eggs of Diatraea saccharalis (Fabricius) (Lepidoptera: Pyralidae), S. frugiperda newly-hatched caterpillars, nymphs of Rhopalosiphum maidis (Fitch) and Schizaphis graminum (Rondani) (Hemiptera: Aphididae). Duration of larva, pupa and larva to adult stages differed among prey offered, whereas the prepupa stage was similar. Larva, pupa, prepupa and larva to adult viabilities were equal or major of 87.5% in all prey, except for larva fed on newly-hatched larvae of S. frugiperda. Eriopis connexa has good adaptation to different prey corroborating its polyphagous feeding habit, which evidences the potential of this natural enemy for controlling corn and sorghum pests

    Magnetic Resonance vs. Intraoral Ultrasonography in the Preoperative Assessment of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Preoperative assessment is critical to decide the most adequate surgical strategy for oral squamous cell carcinoma (SCC). Magnetic resonance (MR) and intraoral ultrasonography (US) have been reported to be of great value for preoperative estimation of depth of invasion (DOI) and/or tumor thickness (TT). This review aims to analyze the accuracy of MR and intraoral US in determining DOI/TT in oral SCC, by assuming histological evaluation as the reference method. Methods: The procedure was conducted following the modified 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We performed a systematic search of papers on PubMed, Scopus, Web of Science, and Cochrane Library databases until July 31st, 2019. For quantitative synthesis, we included nine studies (487 patients) focused on MR, and 12 (520 patients) focused on intraoral US. The Pearson correlation coefficient (r) between DOI/TT evaluated with MR or intraoral US was assumed as effect size. A meta-analysis (MA) for each study group (MR and US) was performed by using the random-effects models with the DerSimonian\u2013Laird estimator and r-to-z transformation. Results: In the MA for MR studies, a high heterogeneity was found (I2 = 94.84%; Q = 154.915, P < 0.001). No significant risk of bias occurred by evaluating funnel plot asymmetry (P = 0.563). The pooled (overall) r of the MR studies was 0.87 (95% CI from 0.82 to 0.92), whereas the pooled r-to-z transformed was 1.44 (95% CI from 1.02 to 1.85). In the MA for US studies a high heterogeneity was found (I2 = 93.56%; Q = 170.884, P < 0.001). However, no significant risk of bias occurred (P = 0.779). The pooled r of the US studies was 0.96 (95% CI from 0.94 to 0.97), whereas the pooled r-to-z transformed was 1.76 (95% CI from 1.39 to 2.13). These outputs were confirmed in additional MA performed by enrolling only MR (n = 8) and US (n = 11) studies that evaluated TT. Conclusions: MR and intraoral US seem to be promising approaches for preoperative assessment of DOI/TT in oral SCC. Remarkably, a higher pooled r and r-to-z transformed were observed in the intraoral US studies, suggesting that this approach could be more closely related to histopathological findings

    Head and neck cancer subtypes with biological and clinical relevance : meta-analysis of gene-expression data

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a disease with heterogeneous clinical behavior and response to therapies. Despite the introduction of multimodality treatment, 40-50% of patients with advanced disease recur. Therefore, there is an urgent need to improve the classification beyond the current parameters in clinical use to better stratify patients and the therapeutic approaches. Following a meta-analysis approach we built a large training set to whom we applied a Disease-Specific Genomic Analysis (DSGA) to identify the disease component embedded into the tumor data. Eleven independent microarray datasets were used as validation sets. Six different HNSCC subtypes that summarize the aberrant alterations occurring during tumor progression were identified. Based on their main biological characteristics and de-regulated signaling pathways, the subtypes were designed as immunoreactive, inflammatory, human papilloma virus (HPV)-like, classical, hypoxia associated, and mesenchymal. Our findings highlighted a more aggressive behavior for mesenchymal and hypoxia-associated subtypes. The Genomics Drug Sensitivity Project was used to identify potential associations with drug sensitivity and significant differences were observed among the six subtypes. To conclude, we report a robust molecularly defined subtype classification in HNSCC that can improve patient selection and pave the way to the development of appropriate therapeutic strategies
    • …
    corecore