43 research outputs found

    The relevance of reducing Veress needle overshooting

    Get PDF
    Safe insertion of the Veress needle during laparoscopy relies on the surgeons’ technical skills in order to stop needle insertion just in time to prevent overshooting in the underlying organs. To reduce this risk, a wide variety of Veress needle systems were developed with safety mechanisms that limit the insertion speed, insertion depth or decouple the driving force generated by the surgeon’s hand on the needle. The aim of this study is to evaluate current surgeons’ perceptions related to the use of Veress needles and to investigate the relevance of preventing overshooting of Veress needles among members of the European Association of Endoscopic Surgery (EAES). An online survey was distributed by the EAES Executive Office to all active members. The survey consisted of demographic data and 14 questions regarding the use of the Veress needle, the training conducted prior to usage, and the need for any improvement. A total of 365 members residing in 58 different countries responded the survey. Of the responding surgeons, 36% prefer the open method for patients with normal body mass index (BMI), and 22% for patients with high BMI. Of the surgeons using Veress needle, 68% indicated that the reduction of overshoot is beneficial in normal BMI patients, whereas 78% indicated that this is beneficial in high BMI patients. On average, the members using the Veress needle had used it for 1448 (SD 3031) times and felt comfortable on using it after 22,9 (SD 78,9) times. The average years of experience was 17,6 (SD 11,1) and the surgeons think that a maximum overshoot of 9.4 (SD 5.5) mm is acceptable before they can safely use the Veress needle. This survey indicates that despite the risks, Veress needles are still being used by the majority of the laparoscopic surgeons who responded. In addition, the surgeons responded that they were interested in using a Veress needle with an extra safety mechanism if it limits the risk of overshooting into the underlying structures.peer-reviewe

    Locating an ice-covered Antarctic landfill using ground magnetometry

    No full text
    At former Antarctic research stations, legacy waste often remains in situ and concealed by ice. Consequently, the location, characteristics and potential environmental impact associated with legacy waste remains poorly documented. This study applies ground magnetometry to map the spatial extent of the landfill at the abandoned Wilkes Station. Magnetic anomalies indicate that the landfill extends north-west to south-east and is close to, and perhaps prograding into, the ocean. The landfill is characterized by large magnetic variations of > 1500 nT with asymmetrical magnetic anomalies which suggest variable orientations of material and random dumping. Magnetic susceptibilities > 0.02SI units beyond the landfill area reveal elevated magnetic properties of the basement geology. However, a contrast in anomaly shape reliably distinguishes large anomalies generated by landfill material. Surface and subsurface melt streams (observed at the shoreline) flowing from the survey area suggest elevated potential for metal contamination of the nearshore and marine environment. The survey demonstrates a cost-effective and non-invasive method for gathering information to guide the clean up of landfills beneath ice.8 page(s

    Managing legacy waste in the presence of cultural heritage at Wilkes Station, East Antarctica

    No full text
    The Antarctic Treaty has been the principal governing force in Antarctica since 1961. The Protocol on Environmental Protection to the Antarctic Treaty (Madrid Protocol) requires that all past and present work and waste-disposal sites are cleaned up unless doing so would cause greater environmental damage or the site is considered to be a monument of significant historical importance. Despite this requirement, legacy waste issues remain unresolved in parts of Antarctica. Clean-up operations in Antarctica are complicated by a combination of restricted access, extreme weather, financial limitations and logistical constraints. Further complications arise at sites such as Wilkes Station, where the requirement for clean-up coexists with the desire to preserve potentially valuable heritage items. Several buildings and artefacts with potential heritage value remain at Wilkes Station. However, Wilkes Station is not officially designated as a historic site or monument under the Antarctic Treaty, nor is it a national or world heritage place under Australian domestic legislation. Consequently the buildings and relics at Wilkes Station are afforded little protection under the existing relevant domestic and international legislative frameworks. This paper uses Wilkes Station as a case study of the complexities associated with conducting clean-up operations at contaminated sites with informal heritage value in Antarctica. The legislative and environmental considerations surrounding clean-up operations at Wilkes Station are also investigated. Furthermore, we argue the importance of a multi-disciplinary approach to operations which facilitate the clean-up of legacy waste and preservation of the potential heritage values at Wilkes. Finally, we recognise that the complexities discussed in this paper have wider applicability and we investigate the relevance of these issues to other Antarctic contaminated sites with formal or informal heritage value.9 page(s

    Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates

    No full text
    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.</p

    Food Safety Issues Related to Uses of Insects for Feeds and Foods

    No full text
    Edible insects are expected to become an important nutrient source for animals and humans in the Western world in the near future. However, before insects can be put on the market, the safety of their use for feed and food is warranted. This literature study was prepared to provide an overview of the actual knowledge of possible food safety hazards, including chemical, microbiological, and allergenic agents and prions, to human and animal health upon the use of insects for food and feed, and to highlight data gaps and suggest the way forward. From the data available, heavy metals of concern are cadmium in black soldier fly and arsenic in yellow mealworm larvae. Investigated mycotoxins do not seem to accumulate. Residues of pesticides, veterinary drugs, and hormones, as well as dioxins and PCBs, are sometimes found in insects. Contamination of insects with pathogens to human health is a consequence of a combination of the substrates used and the farming and processing steps applied. Insects harbor a wide variety of microorganisms, and some human pathogenic bacteria may be present. In addition, insects may harbor and transmit parasites. There is no evidence so far insects may harbor pathogenic viruses or prions, but they may act as vectors. Insects and insect-derived products may have allergenic potential. In this review, evidence on some safety aspects is displayed, and data gaps are identified. Recommendations are given for future research to fill the most relevant data gaps.</p

    Food Safety Issues Related to Uses of Insects for Feeds and Foods

    No full text
    Edible insects are expected to become an important nutrient source for animals and humans in the Western world in the near future. However, before insects can be put on the market, the safety of their use for feed and food is warranted. This literature study was prepared to provide an overview of the actual knowledge of possible food safety hazards, including chemical, microbiological, and allergenic agents and prions, to human and animal health upon the use of insects for food and feed, and to highlight data gaps and suggest the way forward. From the data available, heavy metals of concern are cadmium in black soldier fly and arsenic in yellow mealworm larvae. Investigated mycotoxins do not seem to accumulate. Residues of pesticides, veterinary drugs, and hormones, as well as dioxins and PCBs, are sometimes found in insects. Contamination of insects with pathogens to human health is a consequence of a combination of the substrates used and the farming and processing steps applied. Insects harbor a wide variety of microorganisms, and some human pathogenic bacteria may be present. In addition, insects may harbor and transmit parasites. There is no evidence so far insects may harbor pathogenic viruses or prions, but they may act as vectors. Insects and insect-derived products may have allergenic potential. In this review, evidence on some safety aspects is displayed, and data gaps are identified. Recommendations are given for future research to fill the most relevant data gaps.</p
    corecore