46 research outputs found

    JNK inhibition sensitises hepatocellular carcinoma cells but not normal hepatocytes to the TNF-related apoptosis-inducing ligand.

    Get PDF
    Background: cJun terminal kinase (JNK) is constitutively activated in most hepatocellular carcinomas (HCCs), yet its exact role in carcinogenesis remains controversial. While tumour necrosis factor (TNF)-related apoptosisinducing ligand (TRAIL) is known as a major mediator of acquired immune tumour surveillance, and is currently being tested in clinical trials as a novel cancer therapy, the resistance of many tumours to TRAIL and concerns about its toxicity in vivo represent obstacles to its clinical application. In this study we investigated whether JNK activity in HCC could contribute to the resistance to apoptosis in these tumours. Methods: The effect of JNK/Jun inhibition on receptormediated apoptosis was analysed by pharmacological inhibition or RNA interference in cancer cells and nontumour cells isolated from human liver or transgenic mice lacking a phosphorylation site for Jun. Results: JNK inhibition caused cell cycle arrest, enhanced caspase recruitment, and greatly sensitised HCC cells but not normal hepatocytes to TRAIL. TRAILinduced activation of JNK could be effectively interrupted by administration of the JNK inhibitor SP600125. Conclusions: Expression and TRAIL-dependent feedback activation of JNK likely represent a mechanism by which cancer cells escape TRAIL-mediated tumour surveillance. JNK inhibition might represent a novel strategy for specifically sensitising HCC cells to TRAIL thus opening promising therapeutic perspectives for safe and effective use of TRAIL in cancer treatment

    Randomized Trial of Anticoagulation Strategies for Noncritically Ill Patients Hospitalized With COVID-19.

    Get PDF
    BACKGROUND Prior studies of therapeutic-dose anticoagulation in patients with COVID-19 have reported conflicting results. OBJECTIVES We sought to determine the safety and effectiveness of therapeutic-dose anticoagulation in noncritically ill patients with COVID-19. METHODS Patients hospitalized with COVID-19 not requiring intensive care unit treatment were randomized to prophylactic-dose enoxaparin, therapeutic-dose enoxaparin, or therapeutic-dose apixaban. The primary outcome was the 30-day composite of all-cause mortality, requirement for intensive care unit-level of care, systemic thromboembolism, or ischemic stroke assessed in the combined therapeutic-dose groups compared with the prophylactic-dose group. RESULTS Between August 26, 2020, and September 19, 2022, 3,398 noncritically ill patients hospitalized with COVID-19 were randomized to prophylactic-dose enoxaparin (n = 1,141), therapeutic-dose enoxaparin (n = 1,136), or therapeutic-dose apixaban (n = 1,121) at 76 centers in 10 countries. The 30-day primary outcome occurred in 13.2% of patients in the prophylactic-dose group and 11.3% of patients in the combined therapeutic-dose groups (HR: 0.85; 95% CI: 0.69-1.04; P = 0.11). All-cause mortality occurred in 7.0% of patients treated with prophylactic-dose enoxaparin and 4.9% of patients treated with therapeutic-dose anticoagulation (HR: 0.70; 95% CI: 0.52-0.93; P = 0.01), and intubation was required in 8.4% vs 6.4% of patients, respectively (HR: 0.75; 95% CI: 0.58-0.98; P = 0.03). Results were similar in the 2 therapeutic-dose groups, and major bleeding in all 3 groups was infrequent. CONCLUSIONS Among noncritically ill patients hospitalized with COVID-19, the 30-day primary composite outcome was not significantly reduced with therapeutic-dose anticoagulation compared with prophylactic-dose anticoagulation. However, fewer patients who were treated with therapeutic-dose anticoagulation required intubation and fewer died (FREEDOM COVID [FREEDOM COVID Anticoagulation Strategy]; NCT04512079).Dr Stone has received speaker honoraria from Medtronic, Pulnovo, Infraredx, Abiomed, and Abbott; has served as a consultant to Daiichi-Sankyo, Valfix, TherOx, Robocath, HeartFlow, Ablative Solutions, Vectorious, Miracor, Neovasc, Ancora, Elucid Bio, Occlutech, CorFlow, Apollo Therapeutics, Impulse Dynamics, Cardiomech, Gore, Amgen, Adona Medical, and Millennia Biopharma; and has equity/ options from Ancora, Cagent, Applied Therapeutics, Biostar family of funds, SpectraWave, Orchestra Biomed, Aria, Cardiac Success, Valfix, and Xenter; his daughter is an employee at IQVIA; and his employer, Mount Sinai Hospital, receives research support from Abbott, Abiomed, Bioventrix, Cardiovascular Systems Inc, Phillips, BiosenseWebster, Shockwave, Vascular Dynamics, Pulnovo, and V-wave. Dr Farkouh has received institutional research grants from Amgen, AstraZeneca, Novo Nordisk, and Novartis; has received consulting fees from Otitopic; and has received honoraria from Novo Nordisk. Dr Lala has received consulting fees from Merck and Bioventrix; has received honoraria from Zoll Medical and Novartis; has served on an advisory board for Sequana Medical; and is the Deputy Editor for the Journal of Cardiac Failure. Dr Moreno has received honoraria from Amgen, Cuquerela Medical, and Gafney; has received payment for expert testimony from Koskoff, Koskoff & Dominus, Dallas W. Hartman, and Riscassi & Davis PC; and has stock options in Provisio. Dr Goodman has received institutional research grants from Bristol Myers Squibb/Pfizer Alliance, Bayer, and Boehringer Ingelheim; has received consulting fees from Amgen, Anthos Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Ferring Pharmaceuticals, HLS Therapeutics, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, and Sanofi; has received honoraria from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Ferring Pharmaceuticals, HLS Therapeutics, JAMP Pharma, Merck, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, Sanofi, and Servier; has served on Data Safety and Monitoring boards for Daiichi-Sankyo/American Regent and Novo Nordisk A/C; has served on advisory boards for Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Eli Lilly, Ferring Pharmaceuticals, HLS Therapeutics, JAMP Pharma, Merck, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, Sanofi, Servier, and Tolmar Pharmaceuticals; has a leadership role in the Novartis Council for Heart Health (unpaid); and otherwise has received salary support or honoraria from the Heart and Stroke Foundation of Ontario/University of Toronto (Polo) Chair, Canadian Heart Failure Society, Canadian Heart Research Centre and MD Primer, Canadian VIGOUR Centre, Cleveland Clinic Coordinating Centre for Clinical Research, Duke Clinical Research Institute, New York University Clinical Coordinating Centre, PERFUSE Research Institute, and the TIMI Study Group (Brigham Health). Dr Ricalde has received consulting fees from Medtronic, Servier, and Boston Scientific; has received honoraria from Medtronic, Pfizer, Merck, Boston Scientific, Biosensors, and Bayer; has served on an advisory board for Medtronic; and has leadership roles in SOLACI and Kardiologen. Dr Payro has received consulting fees from Bayer Mexico; has received honoraria from Bayer, Merck, AstraZeneca, Medtronic, and Viatris; has received payments for expert testimony from Bayer; has received travel support from AstraZeneca; has served on an advisory board for Bayer; and his institution has received equipment donated from AstraZeneca. Dr Castellano has received consulting fees and honoraria from Ferrer International, Servier, and Daiichi-Sankyo; and has received travel support from Ferrer International. Dr Hung has served as an advisory board member for Pfizer, Merck, AstraZeneca, Fosun, and Gilead. Dr Nadkarni has received consulting fees from Renalytix, Variant Bio, Qiming Capital, Menarini Health, Daiichi-Sankyo, BioVie, and Cambridge Health; has received honoraria from Daiichi-Sankyo and Menarini Health; has patents for automatic disease diagnoses using longitudinal medical record data, methods, and apparatus for diagnosis of progressive kidney function decline using a machine learning model, electronic phenotyping technique for diagnosing chronic kidney disease, deep learning to identify biventricular structure and function, fusion models for identification of pulmonary embolism, and SparTeN: a novel spatio-temporal deep learning model; has served on a Data Safety and Monitoring Board for CRIC OSMB; has leadership roles for Renalytix scientific advisory board, Pensive Health scientific advisory board, and ASN Augmented Intelligence and Digital Health Committee; has ownership interests in Renalytix, Data2Wisdom LLC, Verici Dx, Nexus I Connect, and Pensieve Health; and his institution receives royalties from Renalytix. Dr Goday has received the Frederick Banting and Charles Best Canada Graduate Scholarship (Doctoral Research Award) from the Canadian Institutes of Health Research. Dr Furtado has received institutional research grants from AstraZeneca, CytoDin, Pfizer, Servier, Amgen, Alliar Diagnostics, and the Brazilian Ministry of Health; has received consulting fees from Biomm and Bayer; has received honoraria from AstraZeneca, Bayer, Servier, and Pfizer; and has received travel support from Servier, AstraZeneca, and Bayer. Dr Granada has received consulting fees, travel support, and stock from Cogent Technologies Corp; and has received stock from Kutai. Dr Contreras has served as a consultant for Merck, CVRx, Novodisk, and Boehringer Ingelheim; and has received educational grants from Alnylam Pharmaceuticals and AstraZeneca. Dr Bhatt has received research funding from Abbott, Acesion Pharma, Afimmune, Aker Biomarine, Amarin, Amgen, AstraZeneca, Bayer, Beren, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Cardax, CellProthera, Cereno Scientific, Chiesi, Cincor, CSL Behring, Eisai, Ethicon, Faraday Pharmaceuticals, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Garmin, HLS Therapeutics, Idorsia, Ironwood, Ischemix, Janssen, Javelin, Lexicon, Lilly, Medtronic, Merck, Moderna, MyoKardia, NirvaMed, Novartis, Novo Nordisk, Owkin, Pfizer Inc, PhaseBio, PLx Pharma, Recardio, Regeneron, Reid Hoffman Foundation, Roche, Sanofi, Stasys, Synaptic, The Medicines Company, Youngene, and 89bio; has received royalties from Elsevier; has received consultant fees from Broadview Ventures and McKinsey; has received honoraria from the American College of Cardiology, Baim Institute for Clinical Research, Belvoir Publications, Boston Scientific, Cleveland Clinic, Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine, Novartis, Population Health Research Institute, Rutgers University, Canadian Medical and Surgical Knowledge Translation Research Group, Cowen and Company, HMP Global, Journal of the American College of Cardiology, K2P, Level Ex, Medtelligence/ReachMD, MJH Life Sciences, Oakstone CME, Piper Sandler, Population Health Research Institute, Slack Publications, WebMD, Wiley, Society of Cardiovascular Patient Care; has received fees from expert testimony from the Arnold and Porter law firm; has received travel support from the American College of Cardiology, Society of Cardiovascular Patient Care, American Heart Association; has a patent for otagliflozin assigned to Brigham and Women’s Hospital who assigned to Lexicon; has participated on a data safety monitoring board or advisory board for Acesion Pharma, Assistance Publique-Hôpitaux de Paris, AngioWave, Baim Institute, Bayer, Boehringer Ingelheim, Boston Scientific, Cardax, CellProthera, Cereno Scientific, Cleveland Clinic, Contego Medical, Duke Clinical Research Institute, Elsevier Practice Update Cardiology, Janssen, Level Ex, Mayo Clinic, Medscape Cardiology, Merck, Mount Sinai School of Medicine, MyoKardia, NirvaMed, Novartis, Novo Nordisk, PhaseBio, PLx Pharma, Regado Biosciences, Population Health Research Institute, and Stasys; serves as a trustee or director for American College of Cardiology, AngioWave, Boston VA Research Institute, Bristol Myers Squibb, DRS.LINQ, High Enroll, Society of Cardiovascular Patient Care, and TobeSoft; has ownership interests in AngioWave, Bristol Myers Squibb, DRS.LINQ, and High Enroll; has other interests in Clinical Cardiology, the NCDR-ACTION Registry Steering Committee; has conducted unfunded research with FlowCo and Takeda, Contego Medical, American Heart Association Quality Oversight Committee, Inaugural Chair, VA CART Research and Publications Committee; and has been a site co-investigator for Abbott, Biotronik, Boston Scientific, CSI, St Jude Medical (now Abbott), Phillips SpectraWAVE, Svelte, and Vascular Solutions. Dr Fuster declares that he raised $7 million from patients for this study granted to Mount Sinai Heart, unrelated to industry. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    State owned enterprises as bribe payers: the role of institutional environment

    Get PDF
    Our paper draws attention to a neglected channel of corruption—the bribe payments by state-owned enterprises (SOEs). This is an important phenomenon as bribe payments by SOEs fruitlessly waste national resources, compromising public welfare and national prosperity. Using a large dataset of 30,249 firms from 50 countries, we show that, in general, SOEs are less likely to pay bribes for achieving organizational objectives owing to their political connectivity. However, in deteriorated institutional environments, SOEs may be subjected to potential managerial rent-seeking behaviors, which disproportionately increase SOE bribe propensity relative to privately owned enterprises. Specifically, our findings highlight the importance of fostering democracy and rule of law, reducing prevalence of corruption and shortening power distance in reducing the incidence of SOE bribery

    Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells.

    No full text
    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multidrug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density

    Red Blood Cell Transfusions Impact Pneumonia Rates After Coronary Artery Bypass Grafting

    No full text
    BACKGROUND: Pneumonia, a known complication of coronary artery bypass grafting (CABG), significantly increases a patient\u27s risk of morbidity and mortality. Although not well characterized, red blood cell (RBC) transfusions may increase a patient\u27s risk of pneumonia. We describe the relationship between RBC transfusion and postoperative pneumonia after CABG. METHODS: A total of 16,182 consecutive patients underwent isolated CABG between 2011 and 2013 at 1 of 33 hospitals in the state of Michigan. We used multivariable logistic regression to estimate the relative odds of pneumonia associated with the use or number of RBC units (0, 1, 2, 3, 4, 5, and ≥ 6). We adjusted for predicted risk of mortality, preoperative hematocrit values, history of pneumonia, cardiopulmonary bypass duration, and medical center. We confirmed the strength and direction of these relationships among selected clinical subgroups in a secondary analysis. RESULTS: Five hundred seventy-six (3.6%) patients had pneumonia and 6,451 (39.9%) received RBC transfusions. There was a significant association between any RBC transfusion and pneumonia (adjusted odds ratio [ORadj], 3.4; p \u3c 0.001). There was a dose response between number of units and odds of pneumonia, with a ptrend less than 0.001. Patients receiving only 2 units of RBCs had a 2-fold (ORadj, 2.1; p \u3c 0.001) increased odds of developing pneumonia. These findings were consistent across clinical subgroups. CONCLUSIONS: We found a significant volume-dependent association between an increasing number of RBCs and the odds of pneumonia, which persisted after risk adjustment. Clinical teams should explore opportunities for preventing a patient\u27s risk of RBC transfusions, including reducing hemodilution or adopting a lower transfusion threshold in a stable patient
    corecore