429 research outputs found
Multistep greedy algorithm identifies community structure in real-world and computer-generated networks
We have recently introduced a multistep extension of the greedy algorithm for
modularity optimization. The extension is based on the idea that merging l
pairs of communities (l>1) at each iteration prevents premature condensation
into few large communities. Here, an empirical formula is presented for the
choice of the step width l that generates partitions with (close to) optimal
modularity for 17 real-world and 1100 computer-generated networks. Furthermore,
an in-depth analysis of the communities of two real-world networks (the
metabolic network of the bacterium E. coli and the graph of coappearing words
in the titles of papers coauthored by Martin Karplus) provides evidence that
the partition obtained by the multistep greedy algorithm is superior to the one
generated by the original greedy algorithm not only with respect to modularity
but also according to objective criteria. In other words, the multistep
extension of the greedy algorithm reduces the danger of getting trapped in
local optima of modularity and generates more reasonable partitions.Comment: 17 pages, 2 figure
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials
The paper concerns - convergence to equilibrium for weak solutions of
the spatially homogeneous Boltzmann Equation for soft potentials (-4\le
\gm<0), with and without angular cutoff. We prove the time-averaged
-convergence to equilibrium for all weak solutions whose initial data have
finite entropy and finite moments up to order greater than 2+|\gm|. For the
usual -convergence we prove that the convergence rate can be controlled
from below by the initial energy tails, and hence, for initial data with long
energy tails, the convergence can be arbitrarily slow. We also show that under
the integrable angular cutoff on the collision kernel with -1\le \gm<0, there
are algebraic upper and lower bounds on the rate of -convergence to
equilibrium. Our methods of proof are based on entropy inequalities and moment
estimates.Comment: This version contains a strengthened theorem 3, on rate of
convergence, considerably relaxing the hypotheses on the initial data, and
introducing a new method for avoiding use of poitwise lower bounds in
applications of entropy production to convergence problem
Motion of a vortex sheet on a sphere with pole vortices
We cons i der the motion of a vortex sheet on the surface of a unit sphere in the presence of point vortices xed on north and south poles.Analytic and numerical research revealed that a vortex sheet in two-dimensional space has the following three properties.First,the vortex sheet is linearly unstable due to Kelvin-Helmholtz instability.Second,the curvature of the vortex sheet diverges in nite time.Last,the vortex sheet evolves into a rolling-up doubly branched spiral,when the equation of motion is regularized by the vortex method.The purpose of this article is to investigate how the curvature of the sphere and the presence of the pole vortices
Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition
In the selective withdrawal experiment fluid is withdrawn through a tube with
its tip suspended a distance S above a two-fluid interface. At sufficiently low
withdrawal rates, Q, the interface forms a steady state hump and only the upper
fluid is withdrawn. When Q is increased (or S decreased), the interface
undergoes a transition so that the lower fluid is entrained with the upper one,
forming a thin steady-state spout. Near this transition the hump curvature
becomes very large and displays power-law scaling behavior. This scaling allows
for steady-state hump profiles at different flow rates and tube heights to be
scaled onto a single similarity profile. I show that the scaling behavior is
independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
- …
