33 research outputs found
Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand
Restiad bogs dominated by Sporadanthus traversii on Chatham Island, New Zealand, were sampled to correlate vegetation patterns and peat properties, and to compare with restiad systems dominated by Sporadanthus ferrugineus and Empodisma minus in the Waikato region, North Island, New Zealand. Classification and ordination resulted in five groups that reflected a disturbance gradient. The largest S. traversii group, which comprised plots from central, relatively intact bogs, had the lowest levels of total nitrogen (mean 1.20 mg cm-3), total phosphorus (mean 0.057 mg cm-3), total potassium (mean 0.083 mg cm-3), and available phosphorus (mean 18.6 ÎŒg cm-3). Modification by drainage, stock, and fires resulted in a decline of S. traversii and an increase of Gleichenia dicarpa fern cover, together with elevated peat nutrient levels and higher bulk density. Compared with peat dominated by Sporadanthus ferrugineus or Empodisma minus in relatively unmodified Waikato restiad bogs, Chatham Island peat under S. traversii has significantly higher total potassium, total nitrogen, available phosphorus, bulk density, and von Post decomposition indices, and significantly lower pH. Sporadanthus traversii and Empodisma minus have similar ecological roles in restiad bog development, occupying a relatively wide nutrient range, and regenerating readily from seed after fire. Despite differences in root morphology, S. traversii and E. minus are the major peat formers in raised restiad bogs on Chatham Island and in Waikato, respectively, and could be regarded as ecological equivalents
Acceptor binding energies in GaN and AlN
We employ effective mass theory for degenerate hole-bands to calculate the
acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors
in GaN and AlN. The calculations are performed through the 66
Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ)
and zincblende (ZB) crystal phases, respectively. An analytic representation
for the acceptor pseudopotential is used to introduce the specific nature of
the impurity atoms. The energy shift due to polaron effects is also considered
in this approach. The ionization energy estimates are in very good agreement
with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN
acceptors are all predicted to be shallower than the corresponding impurities
in the WZ phase. The binding energy dependence upon the crystal field splitting
in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar
`shallow' values to those in GaN, but with some important differences, which
depend on the band structure parameterizations, especially the value of crystal
field splitting used.Comment: REVTEX file - 1 figur
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
Development of an in vitro protocol for a difficult-to-propagate endemic Australian dryland sedge species Mesomelaena pseudostygia (Cyperaceae)
In vitro propagation for Mesomelaena pseudostygia a difficult-to-propagate dryland sedge species (Cyperaceae) endemic to Western Australia is described. Multiple avenues to in vitro propagation were investigated: shoot culture, organogenesis and somatic embryogenesis, with zygotic embryos as initiation material. The highest multiplication rate for shoots was 3.4â±â1.0 after 6 wk on basal medium (1/2 strength Murashige and Skoog) with 2.5 ÎŒM kinetin and 0.5 ÎŒM 6-benzylaminopurine. Shoots achieved peak rooting (83%) following a pulse treatment on basal medium containing 10 ÎŒM indolebutyric acid and 2 ÎŒM α-naphthaleneacetic acid for 7 wk, followed by transfer to medium (without growth regulators) for a further 7 wk. Alternatively, in vitro grown shoots were pulse treated on basal medium with both 100 ÎŒM indolebutyric acid and 20 ÎŒM α-naphthaleneacetic acid for 1 wk then placed in Rockwool plugs (under propagation house conditions) for another 7 wk resulting in 63% root induction. Rooted plantlets were also successfully transferred to potting mixture either in Rockwool plugs or bare rooted and maintained in propagation house conditions with â„95% survival after 7 wk. These results indicate that micropropagation of M. pseudostygia is feasible for small to medium scale restoration purposes. The highest frequency of callus induction was from cultured zygotic embryos on basal medium with 5 ÎŒM α-naphthaleneacetic acid, whereas 2,4-dichlorophenoxacetic acid (2 or 5 ÎŒM) produced the largest callus sizes. A low frequency of shoot regeneration occurred in zygotic callus tissues in basal medium treatments containing cytokinin (kinetin or thidiazuron at 1 ÎŒM). A small proportion (<20%) of zygotic embryo callus explants from 2,4-dichlorophenoxyacetic acid treatments were found to be embryogenic, firstly developing embryo-like structures after 2 wk on basal medium (minus plant growth hormones), that continued to develop with approximately one in twenty germinating after a further 4 wk on basal medium to form small plantlets. Further optimisation is needed to improve somatic embryogenesis efficiency for mass propagation