113 research outputs found

    Quantitative characterization of amyloid deposits in murine models of alzheimer disease by phase-contrast x-ray imaging

    Full text link
    Alzheimer's is a neurodegenerative disease that is the most common form of dementia, but there is still no definitive cure for this disease. The noninvasive X-ray Phase Contrast Tomography (XPCT) imaging technique was used to study brain tissues in mouse models of Alzheimer's disease, AP-PS1 and APP23. The XPCT technique enabled high-resolution imaging of brain tissues, distinguishing between different brain structures, such as amyloid deposits and neuronal cells. In addition, the XPCT technique provided detailed information on the distribution and morphology of amyloid deposits in AP-PS1 and APP23 mice putting in evidence the differences between these two models. This work demonstrates the effectiveness of this technique in supporting Alzheimer's studies and evaluating new therapeutic strategies.Comment: 14 pages, 8 figure

    Discovery of Lebambromyia in Myanmar cretaceous amber: phylogenetic and biogeographic implications (Insecta, Diptera, Phoroidea)

    Get PDF
    Lebambromyia sacculifera sp. nov. is described from Late Cretaceous amber from Myan-mar, integrating traditional observation techniques and X-ray phase contrast microtomography. Lebambromyia sacculifera is the second species of Lebambromyia after L. acrai Grimaldi and Cumming, described from Lebanese amber (Early Cretaceous), and the first record of this taxon from Myanmar amber, considerably extending the temporal and geographic range of this genus. The new specimen bears a previously undetected set of phylogenetically relevant characters such as a postpedicel sacculus and a prominent clypeus, which are shared with Ironomyiidae and Eumuscomorpha. Our cladistic analyses confirmed that Lebambromyia represented a distinct monophyletic lineage related to Platypezidae and Ironomyiidae, though its affinities are strongly influenced by the interpretation and coding of the enigmatic set of features characterizing these fossil flies

    3D imaging of theranostic nanoparticles in mice organs by means of x-ray phase contrast tomography

    Get PDF
    Theranostics is an innovative research field that aims to develop high target specificity cancer treatments by administering small metal-based nanoparticles (NPs). This new generation of compounds exhibits diagnostic and therapeutic properties due to the high atomic number of their metal component. In the framework of a combined research program on low dose X-ray imaging and theranostic NPs, X-ray Phase Contrast Tomography (XPCT) was performed at ESRF using a 3 \u3bcm pixel optical system on two samples: a mouse brain bearing melanoma metastases injected with gadolinium NPs and, a mouse liver injected with gold NPs. XPCT is a non-destructive technique suitable to achieve the 3D reconstruction of a specimen and, widely used at micro-scale to detect abnormalities of the vessels, which are associated to the tumor growth or to the development of neurodegenerative diseases. Moreover, XPCT represents a promising and complementary tool to study the biodistribution of theranostic NPs in biological materials, thanks to the strong contrast with respect to soft tissues that metal-based NPs provide in radiological images. This work is relied on an original imaging approach based on the evaluation of the contrast differences between the images acquired below and above K-edge energies, as a proof of the certain localization of NPs. We will present different methods aiming to enhance the localization of NPs and a 3D map of their distribution in large volume of tissues

    Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    Get PDF
    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPC\u3bcT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL\uae) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL\uae compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL\uae, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study

    High resolution 3D visualization of the spinal cord in a post-mortem murine model

    Get PDF
    A crucial issue in the development of therapies to treat pathologies of the central nervous system is represented by the availability of non-invasive methods to study the three-dimensional morphology of spinal cord, with a resolution able to characterize its complex vascular and neuronal organization. X-ray phase contrast micro-tomography enables a high-quality, 3D visualization of both the vascular and neuronal network simultaneously without the need of contrast agents, destructive sample preparations or sectioning. Until now, high resolution investigations of the post-mortem spinal cord in murine models have mostly been performed in spinal cords removed from the spinal canal. We present here post-mortem phase contrast micro-tomography images reconstructed using advanced computational tools to obtain high-resolution and high-contrast 3D images of the fixed spinal cord without removing the bones and preserving the richness of micro-details available when measuring exposed spinal cords. We believe that it represents a significant step toward the in-vivo application

    Exploring Alzheimer's disease mouse brain through X-ray phase contrast tomography: From the cell to the organ

    Get PDF
    Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (A beta) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking.X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of A beta plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches.XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases

    Steerable3D: An ImageJ plugin for neurovascular enhancement in 3-D segmentation

    Get PDF
    PurposeImage processing plays a fundamental role in the study of central nervous system, for example in the analysis of the vascular network in neurodegenerative diseases. Synchrotron X-ray Phase-contrast micro-Tomography (SXPCT) is a very attractive method to study weakly absorbing samples and features, such as the vascular network in the spinal cord (SC). However, the identification and segmentation of vascular structures in SXPCT images is seriously hampered by the presence of image noise and strong contrast inhomogeneities, due to the sensitivity of the technique to small electronic density variations. In order to help with these tasks, we implemented a user-friendly ImageJ plugin based on a 3D Gaussian steerable filter, tuned up for the enhancement of tubular structures in SXPCT images.MethodsThe developed 3D Gaussian steerable filter plugin for ImageJ is based on the steerability properties of Gaussian derivatives. We applied it to SXPCT images of ex-vivo mouse SCs acquired at different experimental conditions.ResultsThe filter response shows a strong amplification of the source image contrast-to-background ratio (CBR), independently of structures orientation. We found that after the filter application, the CBR ratio increases by a factor ranging from ~6 to ~60. In addition, we also observed an increase of 35% of the contrast to noise ratio in the case of injured mouse SC.ConclusionThe developed tool can generally facilitate the detection/segmentation of capillaries, veins and arteries that were not clearly observable in non-filtered SXPCT images. Its systematic application could allow obtaining quantitative information from pre-clinical and clinical images

    Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography

    Get PDF
    A collection of more than 1800 carbonized papyri, discovered in the Roman 'Villa dei Papiri' at Herculaneum is the unique classical library survived from antiquity. These papyri were charred during 79 A.D. Vesuvius eruption, a circumstance which providentially preserved them until now. This magnificent collection contains an impressive amount of treatises by Greek philosophers and, especially, Philodemus of Gadara, an Epicurean thinker of 1st century BC. We read many portions of text hidden inside carbonized Herculaneum papyri using enhanced X-ray phase-contrast tomography non-destructive technique and a new set of numerical algorithms for 'virtual-unrolling'. Our success lies in revealing the largest portion of Greek text ever detected so far inside unopened scrolls, with unprecedented spatial resolution and contrast, all without damaging these precious historical manuscripts. Parts of text have been decoded and the 'voice' of the Epicurean philosopher Philodemus is brought back again after 2000 years from Herculaneum papyri

    Allelic variants for Waxy genes in common wheat lines bred at the Lukyanenko National Grain Center

    Get PDF
    This article presents the results of a molecular marker-assisted study of allelic variants of Wx genes in common wheat (Triticum aestivum L.) lines. The study was carried out as part of the work on the transfer of null alleles of the genes Wx-A1, Wx-B1, and Wx-D1 to the varieties of soft wheat and creation of breeding material with modified activities of the main enzymes involved in amylose biosynthesis. The lines were obtained at the Department of Breeding and Seed Production of Wheat and Triticale, National Center of Grain named after P.P. Lukyanenko, by crossing mutant forms carrying inactive (null) alleles of genes Wx-A1, Wx-B1, and Wx-D1 with bread wheat cultivars. The molecular markers selected for the study allowed identification of valuable breeding material carrying both single null alleles of Wx genes and their combinations in its genome. A combination of two null alleles (Wx-A1b + Wx-D1b) was detected in 30 lines. The presence of three null alleles (Wx-A1b + Wx-B1b + Wx-D1b), which corresponded to fully Wx wheat, was found in one line. We selected 37 lines that combined the presence of the Wx-B1e allele with the Wx-A1b and Wx-D1b null alleles. The Wx-A1b + Wx-B1e combination was identified in 26 lines, and 24 lines carried the combination of alleles Wx-B1e + Wx-D1b. The mutant forms PI619381, PI619384, and PI619386 were identified as carriers of the functional Wx-B1e allele. The Wx-A1b and Wx-B1e alleles could have been transferred to the studied lines from the donors used or from the Starshina and Korotyshka varieties, respectively. The mutant forms used in the crosses are donors of the Wx-B1b and Wx-D1b alleles. The use of molecular markers chosen by us for identification of the allelic state of the Wx-A1, Wx-B1, and Wx-D1 genes can provide grounds for marker-assisted selection for this trait. Selected lines found to possess null alleles of the Wx genes are applicable in breeding programs aimed at the improvement of technological qualities of grain and raise of bread wheat varieties with modified starch properties
    • …
    corecore