60 research outputs found
Characterization of Selective Antibacterial Peptides by Polarity Index
In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups
Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking
Stochastic aspects of chemical reaction models related to the Soai reactions
as well as to the homochirality in life are studied analytically and
numerically by the use of the master equation and random walk model. For
systems with a recycling process, a unique final probability distribution is
obtained by means of detailed balance conditions. With a nonlinear
autocatalysis the distribution has a double-peak structure, indicating the
chiral symmetry breaking. This problem is further analyzed by examining
eigenvalues and eigenfunctions of the master equation. In the case without
recycling process, final probability distributions depend on the initial
conditions. In the nonlinear autocatalytic case, time-evolution starting from a
complete achiral state leads to a final distribution which differs from that
deduced from the nonzero recycling result. This is due to the absence of the
detailed balance, and a directed random walk model is shown to give the correct
final profile. When the nonlinear autocatalysis is sufficiently strong and the
initial state is achiral, the final probability distribution has a double-peak
structure, related to the enantiomeric excess amplification. It is argued that
with autocatalyses and a very small but nonzero spontaneous production, a
single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
Can filesharers be triggered by economic incentives? Results of an experiment
Illegal filesharing on the internet leads to considerable financial losses for artists and copyright owners as well as producers and sellers of music. Thus far, measures to contain this phenomenon have been rather restrictive. However, there are still a considerable number of illegal systems, and users are able to decide quite freely between legal and illegal downloads because the latter are still difficult to sanction. Recent economic approaches account for the improved bargaining position of users. They are based on the idea of revenue-splitting between professional sellers and peers. In order to test such an innovative business model, the study reported in this article carried out an experiment with 100 undergraduate students, forming five small peer-to-peer networks.The networks were confronted with different economic conditions.The results indicate that even experienced filesharers hold favourable attitudes towards revenue-splitting.They seem to be willing to adjust their behaviour to different economic conditions
Erratum to “Characterization of Selective Antibacterial Peptides by Polarity Index”
Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to standard scaling on the bottom right. Effective resizing of images should not only use geometric constraints, but consider the image content as well. We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion. A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function. By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image. By applying these operators in both directions we can retarget the image to a new size. The selection and order of seams protect the content of the image, as defined by the energy function. Seam carving can also be used for image content enhancement and object removal. We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process. By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size
- …