45 research outputs found

    How to enhance quantum generative adversarial learning of noisy information

    Get PDF
    Quantum Machine Learning is where nowadays machine learning meets quantum information science. In order to implement this new paradigm for novel quantum technologies, we still need a much deeper understanding of its underlying mechanisms, before proposing new algorithms to feasibly address real problems. In this context, quantum generative adversarial learning is a promising strategy to use quantum devices for quantum estimation or generative machine learning tasks. However, the convergence behaviours of its training process, which is crucial for its practical implementation on quantum processors, have not been investigated in detail yet. Indeed here we show how different training problems may occur during the optimization process, such as the emergence of limit cycles. The latter may remarkably extend the convergence time in the scenario of mixed quantum states playing a crucial role in the already available noisy intermediate scale quantum devices. Then, we propose new strategies to achieve a faster convergence in any operating regime. Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols allowing to evaluate the potential advantages over their classical counterparts.Comment: 16 pages, 9 figure

    Complexity in the presence of a boundary

    Get PDF
    The effects of a boundary on the circuit complexity are studied in two dimensional theories. The analysis is performed in the holographic realization of a conformal field theory with a boundary by employing different proposals for the dual of the complexity, including the \u201cComplexity = Volume\u201d (CV) and \u201cComplexity = Action\u201d (CA) prescriptions, and in the harmonic chain with Dirichlet boundary conditions. In all the cases considered except for CA, the boundary introduces a subleading logarithmic divergence in the expansion of the complexity as the UV cutoff vanishes. Holographic subregion complexity is also explored in the CV case, finding that it can change discontinuously under continuous variations of the configuration of the subregion

    Comparison of Best Management Practice Adoption Between Virginia\u27s Chesapeake Bay Basin and Southern Rivers Watersheds

    Get PDF
    Producers in two regions of Virginia (Chesapeake Bay basin and Southern Rivers region) were surveyed to compare farming practices and agricultural best management practice (BMP) adoption. Objectives were to assess farming operations and determine the extent of cost-share and non-cost-share BMP implementation and gain insight into the impact of selected socioeconomic factors on the BMP adoption. Although farming characteristics and producer attitudes toward pollution and water quality were similar, BMP implementation differed between the two regions. Differences in BMP implementation may be due to a more focused, longer-term NPS pollution control educational effort in the Bay basin

    Parallel-in-time quantum simulation via Page and Wootters quantum time

    Full text link
    In the past few decades, researchers have created a veritable zoo of quantum algorithm by drawing inspiration from classical computing, information theory, and even from physical phenomena. Here we present quantum algorithms for parallel-in-time simulations that are inspired by the Page and Wooters formalism. In this framework, and thus in our algorithms, the classical time-variable of quantum mechanics is promoted to the quantum realm by introducing a Hilbert space of "clock" qubits which are then entangled with the "system" qubits. We show that our algorithms can compute temporal properties over NN different times of many-body systems by only using log(N)\log(N) clock qubits. As such, we achieve an exponential trade-off between time and spatial complexities. In addition, we rigorously prove that the entanglement created between the system qubits and the clock qubits has operational meaning, as it encodes valuable information about the system's dynamics. We also provide a circuit depth estimation of all the protocols, showing an exponential advantage in computation times over traditional sequential in time algorithms. In particular, for the case when the dynamics are determined by the Aubry-Andre model, we present a hybrid method for which our algorithms have a depth that only scales as O(log(N)n)\mathcal{O}(\log(N)n). As a by product we can relate the previous schemes to the problem of equilibration of an isolated quantum system, thus indicating that our framework enable a new dimension for studying dynamical properties of many-body systems.Comment: 19+15 pages, 18+1 figure

    A framework for assessing 16S rRNA marker-gene survey data analysis methods using mixtures.

    Get PDF
    There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance to decide between available analysis methods. Mixtures of environmental samples are useful for assessing analysis methods as one can evaluate methods based on calculated expected values using unmixed sample measurements and the mixture design. Previous studies have used mixtures of environmental samples to assess other sequencing methods such as RNAseq. But no studies have used mixtures of environmental to assess 16S rRNA sequencing. We developed a framework for assessing 16S rRNA sequencing analysis methods which utilizes a novel two-sample titration mixture dataset and metrics to evaluate qualitative and quantitative characteristics of count tables. Our qualitative assessment evaluates feature presence/absence exploiting features only present in unmixed samples or titrations by testing if random sampling can account for their observed relative abundance. Our quantitative assessment evaluates feature relative and differential abundance by comparing observed and expected values. We demonstrated the framework by evaluating count tables generated with three commonly used bioinformatic pipelines: (i) DADA2 a sequence inference method, (ii) Mothur a de novo clustering method, and (iii) QIIME an open-reference clustering method. The qualitative assessment results indicated that the majority of Mothur and QIIME features only present in unmixed samples or titrations were accounted for by random sampling alone, but this was not the case for DADA2 features. Combined with count table sparsity (proportion of zero-valued cells in a count table), these results indicate DADA2 has a higher false-negative rate whereas Mothur and QIIME have higher false-positive rates. The quantitative assessment results indicated the observed relative abundance and differential abundance values were consistent with expected values for all three pipelines. We developed a novel framework for assessing 16S rRNA marker-gene survey methods and demonstrated the framework by evaluating count tables generated with three bioinformatic pipelines. This framework is a valuable community resource for assessing 16S rRNA marker-gene survey bioinformatic methods and will help scientists identify appropriate analysis methods for their marker-gene surveys.https://doi.org/10.1186/s40168-020-00812-

    Sensing of Dietary Lipids by Enterocytes: A New Role for SR-BI/CLA-1

    Get PDF
    BACKGROUND: The intestine is responsible for absorbing dietary lipids and delivering them to the organism as triglyceride-rich lipoproteins (TRL). It is important to determine how this process is regulated in enterocytes, the absorptive cells of the intestine, as prolonged postprandial hypertriglyceridemia is a known risk factor for atherosclerosis. During the postprandial period, dietary lipids, mostly triglycerides (TG) hydrolyzed by pancreatic enzymes, are combined with bile products and reach the apical membrane of enterocytes as postprandial micelles (PPM). Our aim was to determine whether these micelles induce, in enterocytes, specific early cell signaling events that could control the processes leading to TRL secretion. METHODOLOGY/PRINCIPAL FINDINGS: The effects of supplying PPM to the apex of Caco-2/TC7 enterocytes were analyzed. Micelles devoid of TG hydrolysis products, like those present in the intestinal lumen in the interprandial period, were used as controls. The apical delivery of PPM specifically induced a number of cellular events that are not induced by interprandial micelles. These early events included the trafficking of apolipoprotein B, a structural component of TRL, from apical towards secretory domains, and the rapid, dose-dependent activation of ERK and p38MAPK. PPM supply induced the scavenger receptor SR-BI/CLA-1 to cluster at the apical brush border membrane and to move from non-raft to raft domains. Competition, inhibition or knockdown of SR-BI/CLA-1 impaired the PPM-dependent apoB trafficking and ERK activation. CONCLUSIONS/SIGNIFICANCE: These results are the first evidence that enterocytes specifically sense postprandial dietary lipid-containing micelles. SR-BI/CLA-1 is involved in this process and could be a target for further study with a view to modifying intestinal TRL secretion early in the control pathway
    corecore