
Complexity in the presence of a boundary

Paolo Braccia a,1, Aldo L. Cotrone a,2 and Erik Tonni b,3

aDipartimento di Fisica, Universitá di Firenze and INFN Sezione di Firenze, Via G. Sansone 1,
50019 Sesto Fiorentino, Italy.

b SISSA and INFN Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy.

Abstract

The effects of a boundary on the circuit complexity are studied in two dimensional
theories. The analysis is performed in the holographic realization of a conformal field
theory with a boundary by employing different proposals for the dual of the complexity,
including the “Complexity = Volume” (CV) and “Complexity = Action” (CA) prescrip-
tions, and in the harmonic chain with Dirichlet boundary conditions. In all the cases
considered except for CA, the boundary introduces a subleading logarithmic divergence
in the expansion of the complexity as the UV cutoff vanishes. Holographic subregion
complexity is also explored in the CV case, finding that it can change discontinuously
under continuous variations of the configuration of the subregion.
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1 Introduction

Circuit complexity can be defined as the minimal number of simple operators (gates) needed
to transform a given reference state into a certain target state. It has been proposed to play
an important role in holography because its growth in time could be dual to the growth of the
volume of black holes [1]. It is nevertheless very challenging to establish a solid entry in the
holographic dictionary for this quantity. On the one side, the notion of complexity, especially
in quantum field theories, is difficult to define because of its dependence on the choice of
gates and the cost function [2–9]. Similarly, for the holographic gravitational counterpart of
complexity, there exist a few different proposals [1, 10–12]. Despite this variety of proposals
could reflect the difficulty to understand complexity, it is crucial to test these prescriptions
in non-trivial cases where computations can be performed in similar settings both in the
gravitational language and in (discretized) field theory.

In this paper we consider circuit complexity in two-dimensional theories with a boundary.
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Given a free scalar field on a segment, after discretizing the theory through a harmonic
chain, one can employ the procedure discussed by Jefferson and Myers [6] to calculate the
complexity of the ground state with respect to a particular Gaussian state as reference state.
In this case the complexity can be written in terms of normal mode frequencies. Since the
system is not translation invariant, the zero mode does not occur in the spectrum and this
allows to set the mass of the oscillators to zero. Instead, in the one dimensional harmonic
chains displaying translation invariance [6,7], the occurrence of the zero mode prevents to set
the mass to zero, hence the comparison with the gravitational results is more problematic.
Motivated by this argument, in this manuscript we consider the harmonic chain with Dirichlet
boundary conditions and we compute two kinds of circuit complexities. For one of them we
obtain an analytic result in the massless theory. When the mass is turned on, we obtain the
same divergent terms of the massless case in the regime, relevant for the continuum limit,
where the number of harmonic oscillators is large. Numerical computations are also provided
in order to support the analytic results. The main outcome of the analysis is the following.
The complexity exhibits leading UV divergences which are identical to the boundary-less
case. Most importantly, subleading logarithmically divergent pieces show up in the results.
We consider them as a signature of the presence of the boundaries because they do not occur
in the periodic case.

In the context of holography, we consider the gravitational dual of a boundary conformal
field theory in two dimensions (BCFT2) according to the proposal introduced in [13] and
further discussed in [14, 15]. In this theory we calculate the complexity of the ground state
using the “Complexity = Volume” (CV) [1,16,17] and “Complexity = Action” (CA) proposals
[10, 18]. From the latter, we can also extract the complexity according to other proposals,
such as the “Complexity = Volume 2.0” (CV2.0) [11]. In all the cases, the result exhibits
both a leading UV divergence which is exactly the same as in the boundary-less case, and
an explicit dependence on the boundary data in subleading terms. This dependence is
qualitatively very different in the CA proposal with respect to the other cases because for
CA boundary data influence only the finite term of the expansion as the UV cutoff vanishes.
Instead, in CV and CV2.0 they occur in the coefficient of a logarithmically divergent term.
As in the free boson case, this divergence is a feature of the boundary, being absent in the
boundary-less case.

Even though the theories mentioned above are not related, we find it worth remarking
that a common feature seems the occurrence of the logarithmically divergent terms in the
complexity in the presence of a physical boundary, with the notable exception of CA. The
same divergent term has been found also in the path-integral optimization analysis [5, 19]
of the complexity in theories with boundaries recently performed in [20]. Thus, in these
cases, the absence of the logarithmic divergence in CA seems to disfavour this proposal with
respect to the other prescriptions. This pattern of results is similar to the one discussed for
models with defects [21]: in that context, while the CV computation provides a subleading
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logarithmic divergence depending on the defect, no such dependence is present in CA.
Finally, the holographic BCFT2 framework allows us to perform a study of the CV sub-

region complexity. Subregion complexity has been proposed to obtain information about
the circuit complexity involving the reduced density matrix associated to a subregion of the
space where the field theory is defined [22]. In the case of the BCFT2, we observe that the
complexity of a single interval can exhibit discontinuous jumps as the configuration of the
interval changes.

The paper is organized as follows. In §2 we present the CV and CA calculations in turn
and comment on alternative proposals for the holographic complexity. In §3 we consider two
different kinds of complexities in the harmonic chain with Dirichlet boundary conditions.
We report on the behaviour of the CV subregion complexity in §4 and draw our conclusions
in §5. Two appendices report further analysis and technical details related to some of the
computations presented in the main text.
Note added: The major results of this manuscript (including the construction of the

WDW patch for CA) are contained in Paolo Braccia’s master thesis, discussed in the end
of July at Florence University. While we were preparing this draft, [20] appeared and had
significant overlaps with the thesis, which has been sent to the authors of [20], who have
agreed with the WDW patch for CA presented here in the second version of their paper.

2 Holographic complexity in AdS3/BCFT2

In this section we first quickly review the construction of the holographic dual of a boundary
conformal field theory. Then we compute in this theory the holographic complexity of the
ground state according to the CV (section 2.2) and CA (section 2.3) prescriptions. At the
end of section 2.3 we comment on the results for some other proposals for the holographic
dual of the complexity.

2.1 AdS3/BCFT2 setup

In this manuscript we adopt the AdS/BCFT setup proposed by Takayanagi in [13] and further
developed in [14,15]. In particular, we focus on the simplest case of the AdS3/BCFT2 duality,
where the BCFT2 is in its ground state and therefore the gravitational background is given
by a portion of AdS3.

The gravitational action considered in [13] for three-dimensional spacetimes reads

A =
1

16πGN

∫
M

√
−g
(
R+

2

R2

)
dt dx dz +

1

8πGN

∫
Q

√
−h
(
K − T

)
dt dx , (2.1)

where R is the AdS radius parameterizing the negative cosmological constant, R is the Ricci
scalar, K = hµνKµν is the trace of the extrinsic curvature of the gravitational boundary
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Q, which is anchored to the boundary of the dual BCFT and extends in the gravitational
bulk, delimiting the region of the asymptotically AdS space providing the holographic dual
of the state of the BCFT2. Evaluating the unit (spacelike) vectors normal to Q, the metric
hµν induced on Q and its extrinsic curvature Kµν are given by hµν = gµν − nµnν and
Kµν = hρµh

λ
ν ∇ρnλ respectively. The constant real parameter T provides the tension of the

brane Q. In our analysis we adopt the Neumann boundary conditions on Q proposed by
Takayanagi in [13] and further discussed in [14,15], which allow to construct the gravitational
boundary Q itself, namely

Kµν = (K − T )hµν . (2.2)

Considering a BCFT2 defined on the half line x ≥ 0 at any constant time slice, it is not
difficult to find that the simplest static gravitational background solving the Einstein equa-
tions with boundary conditions (2.2) is obtained by taking AdS3, whose metric in Poincaré
coordinates reads

ds2 =
R2

z2

(
−dt2 + dz2 + dx2

)
, (2.3)

and restricting to the region delimited by the half-plane given by

Q : x(z) = −z cot(α) , (2.4)

where α is the angle that the Q brane forms with the boundary. The value of the tension
parameter corresponding to this half-plane is given by T = cos(α)/R. The condition α = π/2

corresponds to the branes Q having zero tensions. Assuming the ansatz z = z(x) for the
brane Q anchored to the half line at x = 0, we cannot find solutions different from (2.4).

A constant time slice of this three-dimensional gravitational background is shown in figure
1, where the red half line corresponds to the constant time slice of the dual BCFT2.

Alternative proposals with respect to [13] to build holographic duals of BCFTs appear
in [23,24], but we do not explore these prescriptions in this paper.

2.2 CV

In this section we evaluate the holographic complexity of our system according to the CV
proposal

CV =
V

lGN

. (2.5)

V is the volume of the codimension-one maximal surface in the bulk anchored to the boundary
time slice determining the state whose complexity is to be evaluated. The arbitrary length
scale l is often set to be the AdS radius R; however we will leave it unspecified in our
calculations.
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Figure 1. Holographic CV complexity in the AdS3/BCFT2 setup. The red half line corre-
sponds to the constant time slice of the spacetime where the BCFT2 is defined. The holographic
CV complexity (see §2.2) is the volume of the yellow plane, delimited by the UV cutoff ε, by
the IR cutoff zIR and by the brane Q (solid blue semi-infinite line).

By symmetry, the extremal surface whose volume is to be calculated is simply the bulk
time slice highlighted in figure 1. We thus need to evaluate the integral

V =

∫ zIR

ε

dz

∫ L

x(z)

dx
√
|γ| , (2.6)

where ε and zIR are UV and IR regulators, L is the (infinite) length of the half line and γ is
the determinant of the induced metric on the time slice.

Considering (2.3), (2.4) the evaluation of the integral gives

V =
R2L

ε

(
1 +

ε

L
cotα log

(zIR
ε

)
− ε

zIR

)
. (2.7)

This leads to

CV =
R2

GN l

[
L

ε
+ cotα log

(zIR
ε

)
− L

zIR

]
, (2.8)

where the last term is subleading with respect to the previous ones. We recall that the Brown-
Henneaux central charge in AdS3/CFT2 is c = 3R/2GN . The structure of the divergencies
in CV is characterized by a UV linear term, which has the same form of the boundary-less
case. On top of this, the result (2.8) for CV exhibits a subleading logarithmic divergence
depending on the boundary parameter α which is absent in the boundary-less case. This
dependence is such that when α = π/2 this divergent term vanishes; the same condition also
gets rid of the infrared logarithmic divergence.

Some studies about the temperature dependence of CV in BCFTs appear in [25,26].
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2.3 CA

In this section we evaluate the holographic complexity employing the complexity equals
action (CA) proposal

CA =
A
π
. (2.9)

The gravitational action A is to be evaluated in the Wheeler-DeWitt patch (WDW), defined
as the union of all the bulk spacelike surfaces anchored at the boundary time slice determining
the state whose complexity is to be evaluated.

The action is separable in bulk, boundary and joint contributions. It reads [27–31] (see
also [12, 21,32–36])

A =
1

16πGN

∫
WDW

d3x
√
−g (R− 2Λ) +

εK
8πGN

∫
Bt/s

d2x
√
|h|K

+
εk

8πGN

∫
Bn
dλdy

√
γκ+

εΘ
8πGN

∫
Bn
dλdy

√
γΘ log (lct|Θ|)

+
εa

8πGN

∫
Σ

dx
√
γa +

1

8πGN

∫
Ω

dx
√
−γΦ

+
1

8πGN

∫
Q∩WDW

d2x
√
−h (K − T ) , (2.10)

where we have adopted the conventions stated in [34]. The first line of this formula contains
the bulk Einstein-Hilbert action and the boundary Gibbons-Hawking-York term for timelike
(t) and spacelike (s) surfaces. Since we will consider only timelike surfaces (the regulators)
εK = 1, but still we have to take care of picking the normal vector to be outward-pointing.
K is the trace of the extrinsic curvature of the boundary, and h the induced metric on it.

In the second line of (2.10) there are the null boundary (Bn) contributions coming from
κ, which measures the failure of the parameter λ in providing an affine parameterization of
the null generators of Bn. Given a parameterization xµ(λ, y) of Bn such that kµ = dxµ/dλ

is the future oriented null normal vector and λ increases toward the future, κ is defined
implicitly by kµ∇µk

ν = κ kν . εκ = ±1 according to the volume of interest lying in future/past
of the boundary that is being considered. In the second line there is also a counterterm
(introducing an arbitrary length scale lct), depending on the “null expansion” Θ, which
keeps reparameterization invariance. Θ is defined as Θ = ∂λ log

√
γ, with γ being the one-

dimensional metric on the null surface. εΘ = ±1 according to the volume of interest lying in
future/past of the boundary that is being considered.

In the third line of (2.10) there are the contributions from joints Σ involving at least one
null surface, which are given by the integral of a counterterm a. The counterterm can be
calculated by a = log |s · k| if the joint involves a timelike and a null boundary (our only
case), whose normal one-forms are s (with s · s = +1) and k respectively. The sign εa is
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Figure 2. The future half of the regularized WDW patch for AdS3 with a boundary.

determined by εa = −sign (s · k) sign
(
k · t̂

)
, where t̂ is the unit timelike vector tangent to

the timelike boundary, orthogonal to the joint and pointing outward from the boundary (see
appendix A of [33] for a detailed discussion). In the same line we have the contributions from
timelike joints Ω involving timelike surfaces only, which depend on the angle Φ formed by the
normal vectors n1, n2 of the latter. Φ is determined by cos Φ = n1 · n2, as explained in [29],
and it is chosen to be positive if the normals n1, n2 are diverging, negative if converging.1

Finally, in the last line of (2.10) there is the contribution coming from the dynamical
boundary Q.

The WDW patch can be determined as the spacetime region outside the light cones orig-
inating from the boundary time slice (taken at t = 0 without loss of generality) upon which
the dual quantum state is defined. Since AdS spacetime is conformally flat, its light cones
are the same as in Minkowski spacetime. We will regulate the patch by cutting it not only
near the boundary at z = ε ∼ 0, but also deep in the bulk at z = zIR ∼ ∞. We have
reported (the future half of) the resulting WDW patch in figure 2.

We acknowledge the possibility of a different regularization scheme, used in [21], where the
cutoff surfaces are bent in order to end orthogonally to the brane Q. In [21] this was done
in order to have a smooth gluing between the two sides of a defect. It was also suggested as
a way to deal with the problems of the Fefferman-Graham expansion in the defect region.

1Timelike joints appeared recently in a similar context in [37].
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We show in Appendix A that adopting this scheme leads exactly to the same results we get
with the regulators used in this section.

We now proceed to calculate the various contributions to the action (2.10).

2.3.1 Bulk terms

Inside the WDW patch the Ricci scalar R is the same as for the case of vacuum AdS3

R = 6Λ , Λ = − 1

R2 . (2.11)

As showed in figure 2 the bulk of the WDW patch can be divided into two parts: center
WDWC and left WDWL, which are the bulk regions under the null boundaries NC and
NL respectively. For each of these parts we can consider just the future half, thanks to the
symmetry in the time direction, and multiply the result by a factor of 2. Since in the central
region

WDWC : t ∈ [0, z] , z ∈ [ε, zIR] , x ∈ [0, L] , (2.12)

where L is the (infinite) length of the space, we find

AWDWC
=

2

16πGN

∫ L

0

dx

∫ zIR

ε

dz

∫ z

0

dt

(
−4R

z3

)
= − R

2πGN

(
L

ε
− L

zIR

)
. (2.13)

Moving on to the left contribution, since

WDWL : t ∈
[
0,
√
z2 + x2

]
, z ∈ [ε, zIR] , x ∈ [−z cotα, 0] , (2.14)

we get

AWDWL
=

2

16πGN

∫ zIR

ε

dz

∫ 0

−z cotα

dx

∫ √z
2
+x

2

0

dt

(
−4R

z3

)
= − R

4πGN

(
cosα

sin2 α
+ log

(
1 + cosα

sinα

))
log
(zIR
ε

)
. (2.15)

Summing the two contributions up together we find

ABulk = − R

2πGN

[
L

ε
+ f(α) log

(zIR
ε

)
− L

zIR

]
, f(φ) =

1

2

(
cosφ

sin2 φ
+ log

(
1 + cosφ

sinφ

))
.

(2.16)

2.3.2 Timelike boundary and joint terms

The timelike boundaries of the WDW patch are the two regulator surfaces z = ε and z = zIR,
called τε and τzIR in figure 2, and the intersection of the boundary Q with the WDW patch.
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Let us begin with the regulators, which are both constant-z surfaces. The UV regulator
z = ε has the following normal vector, induced metric and extrinsic curvature

nµε =
(

0,− ε

R
, 0
)
, dh2

ε =
R2

ε2
(
−dt2 + dx2

)
, Kε =

2

R
. (2.17)

As for the bulk contribution we can split the surface (see figure 2) in a central τCε and a left
τLε part. The central contribution is easily evaluated as

A
τ
C
ε

=
2

8πGN

∫ ε

0

dt

∫ L

0

dx
2R

ε2
=

R

2πGN

L

ε
. (2.18)

For the left contribution we have

A
τ
L
ε

=
2

8πGN

∫ 0

−ε cotα

dx

∫ √ε
2
+x

2

0

dt
2R

ε2
=

R

2πGN

f(α) , (2.19)

where f(φ) was defined in (2.16). Summing the contributions up we find

Aτε =
R

2πGN

[
L

ε
+ f(α)

]
. (2.20)

The IR regulator z = zIR will give an identical contribution, apart from a change of sign
coming from the normal vector being pointed in the opposite direction

AτzIR = − R

2πGN

[
L

zIR
+ f(α)

]
. (2.21)

The normal vector to Q, needed to compute the contribution to A coming from the joint
JLε : τε ∩Q, is

nµ =
z

R
(0,− cosα,− sinα) . (2.22)

The normals we need are n1 = n, n2 = nε, where nε is found in (2.17). Since these normals
are diverging, we get

Φ = | arccos(n1 · n2)| = α . (2.23)

The one-dimensional metric induced on the joint is such that
√
−γ = R

ε
, thus

A
J
L
ε

=
2

8πGN

∫ ε
sinα

0

dt
αR

ε
=

R

4πGN

α

sinα
. (2.24)

The joint involving the IR regulator z = zIR gives

A
J
L
zIR

=
R

4πGN

π − α
sinα

, (2.25)

so altogether the timelike joints Ω = JLε + JLzIR contribute as

AΩ =
R

4GN

1

sinα
. (2.26)
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2.3.3 Null boundary and joint terms

The null boundary can be split in two sections: a central section NC and a left one NL, as
shown in figure 2. The surface NC is determined by

f(xµ) = t− z = 0 , x ∈ [0, L] . (2.27)

The inward pointing normal one-form is kµ ∝ −df = A(−1, 1, 0), A > 0, which brings us to
the future directed vector

kµ =
A

R2

(
z2, z2, 0

)
, (2.28)

that turns out to be affinely parameterized (kµ∇µk
ν = 0), and so κ = 0. We can then

parameterize the surface as

xµ(λ, x) = (t(λ), z(λ), x) =

(
−R

2

λA
,−R

2

λA
, x

)
, λ = −R

2

Az
, (2.29)

where z ∈ (ε, zIR). Since κ = 0 the only contribution will come from the counterterm, so we
need to evaluate the quantities

γ = gxx =
R2

z2 , Θ = ∂λ log (
√
γ) =

1
√
γ

∂z

∂λ

∂
√
γ

∂z
= −Az

R2 . (2.30)

Noticing that εΘ = −1, we get

ANC = − 2

8πGN

∫ L

0

dx

∫ − R
2

AzIR

−R
2

Aε

dλ
R

z

(
−Az
R2

)
log

(
lct
Az

R2

)
= − RL

4πGN

[
1

ε
log

(
R2

Alctε

)
− 1

zIR
log

(
R2

AlctzIR

)
− 1

ε
+

1

zIR

]
. (2.31)

In order to compute the analogous contribution coming from the left part of the null
boundary NL, we move to cylindrical system of coordinates (t, r, θ) such that

z = r cos θ , x = −r sin θ , θ ∈
[
0,
π

2
− α

]
. (2.32)

The metric reads

ds2 =
R2

r2 cos2 θ

(
−dt2 + dr2 + r2dθ2

)
, (2.33)

and the surface NL can be parameterized as

xµ(λ, θ) = (Bλ,Bλ, θ) , (2.34)
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with Bλ = t and B > 0. The lightlike, future directed, normal vector and the spacelike
tangent vector to NL read

kµ =
dxµ

dλ
= B(1, 1, 0) , eµ =

dxµ

dθ
= (0, 0, 1) . (2.35)

Since
√
γ =

R

cos θ
, κ = −2

λ
, Θ = 0 , (2.36)

we only need to evaluate the contribution coming from κ (note that εk = −1)

ANL = − 2

8πGN

∫ π
2
−α

0

dθ

∫ zIR
B cos θ

ε
B cos θ

dλ
R

cos θ

(
−2

λ

)
=

R

2πGN

log
(zIR
ε

)
log

(
1 + cosα

sinα

)
.

(2.37)
Let us come to the joints of the null surface with the regulator surfaces, starting with the

central part of the joint with z = ε, which we will call Σε
C

Σε
C : z = t = ε , x ∈ [0, L] . (2.38)

The normals we need to evaluate the counterterm a are

sµ =

(
0,−R

ε
, 0

)
, kµ = A (−1, 1, 0) , (2.39)

so that we have
√
γ =

R

ε
, a = log

(
Aε

R

)
. (2.40)

The unit tangent vector to the regulator surface and orthogonal to the joint is t̂ = ε
R
∂t, so

the sign εa is εa = −sign (s · k) sign
(
k · t̂

)
= −1, leading us to

AΣ
ε
C

=
R

4πGN

L

ε
log

(
R

Aε

)
. (2.41)

The contribution from the central joint with the IR regulator is analogous.
The left joint Σε

L is given by

Σε
L : t = r =

ε

cos θ
, θ ∈

[
0,
π

2
− α

]
, (2.42)

where we adopted cylindrical coordinates (t, r, θ). Transforming sµ to such a coordinate
system we find

sµ =

(
0,−ε cos θ

R
,
ε sin θ

rR

)
, kµ = B(1, 1, 0) . (2.43)

With these we can evaluate

√
γ =

R

cos θ
, a = log

(
BR cos θ

ε

)
, (2.44)
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and one can check that εa = −1, so

AΣ
ε
L

= − R

4πGN

∫ π
2
−α

0

dθ
log
(
BR cos θ

ε

)
cos θ

. (2.45)

The contribution coming from the joint at zIR is

AΣ
zIR
L

=
R

4πGN

∫ π
2
−α

0

dθ
log
(
BR cos θ
zIR

)
cos θ

, (2.46)

so

AΣ
ε
L

+AΣ
zIR
L

= − R

4πGN

log
(zIR
ε

)∫ π
2
−α

0

dθ
1

cos θ
= − R

4πGN

log
(zIR
ε

)
log

(
1 + cosα

sinα

)
.

(2.47)
Lastly, we have to consider the joint formed by the intersection NL ∪Q, that we denoted

with JLN , (see figure 2). Since this joint corresponds to the outermost null generator of NL,
it is a null one-dimensional segment so its line element vanishes. Thus, as noted in [38], its
contribution to the gravitational action vanishes. To check further this statement we took a
limiting procedure, considering a family of timelike surfaces τaL approaching NL in the limit
a→ 0, and computed the contribution of their intersection with Q, finding that it vanishes
as a goes to zero. We could also obtain NL as the limit of a family of spacelike surfaces SaL
and again we would find a vanishing A

J
L
N
. We stress that, as discussed in [31], we can use

such a limiting procedure thanks to the fact of NL being stationary (Θ = 0).

2.3.4 Brane term

The last term we have to evaluate is the one associated with the brane Q. The region
Q ∩WDW corresponds to

t ∈
[
0,

z

sinα

]
, z ∈ [ε, zIR] , x = −z cotα , (2.48)

so we have
√
−h = R

2

z
2

sinα
, leading us to

AQ =
1

8πGN

∫
Q∩WDW

d2x
√
−h (K − T ) =

R

4πGN

cosα

sin2 α
log
(zIR
ε

)
. (2.49)

In the WDW patch we have also corners, point-like objects for which, as noted in [21],
it is not easy to come up with an appropriate term describing their contribution to the
gravitational action. Moreover by dimensional analysis there are no local counterterms for
codimension-three submanifolds. Finally, in all the cases in the literature where it was
possible to regulate the corners and calculate their contribution with a limiting procedure,
the result was vanishing. So, we discard possible contributions of corners.2

2We thank Giuseppe Policastro for clarifications about this point.
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2.3.5 Result for CA

Recalling that in natural units CA = A/π, summing up all contributions found in the
previous sections we get many cancellations and we are left with

CA =
R

4π2GN

[
L

ε

(
1 + log

(
lct
R

))
+

π

sinα
− L

zIR

]
. (2.50)

As in the CV case, the leading 1/ε UV divergence is the same as in the boundary-less case.
But unlike CV, in CA we do not find a subleading logarithmic divergence. This phenomenon
is analogous to the result obtained in [21] for the theory with defects. Nonetheless, we find
that also in CA the boundary modifies the structure of holographic complexity, but this
time in the finite piece depending on α. It is worth stressing that it is present in the
alternative regularization used in Appendix A as well. Note that in the computation the
finite term comes entirely from the time-like joints, which are known to be peculiar, since
the gravitational action is not additive in their presence [38].

As a last comment, we would like to point out that other proposals for the holographic
dual of the circuit complexity are present in the literature. Two of them are easily extracted
from the computation of CA (other refined proposals can be found in [39, 40]). The first
proposal, called CV2.0, states that the complexity can be calculated as the product of the
pressure, given in terms of the cosmological constant (p = −Λ/(8πGN)), times the volume of
the WDW patch [11]. For the background at hand, since the Ricci scalar is proportional to
the cosmological constant, the complexity is basically the bulk part of the action calculated
on the WDW patch, formula (2.16)

CV 2.0 = pV (WDW ) = −1

2
ABulk =

R

4πGN

[
L

ε
+ f(α) log

(zIR
ε

)
− L

zIR

]
. (2.51)

The structure of this result is the same one as CV (2.8), with a subleading logarithmic
divergence depending on the boundary data (the actual form of the functions of α being
different in the two cases). A similar conclusion can be drawn for the suggestion in [12],
stating that the complexity could be given in terms of just the surface and joint terms of the
gravitational action on the WDW patch

C ∼ A−ABulk . (2.52)

In this case, on top of the subleading logarithmic divergence, there would also be a finite
piece depending on the boundary data (the one corresponding to the timelike joints).
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3 Complexity in the harmonic chain with Dirichlet bound-
ary conditions

In this section we adapt the analysis of [6,41] (see also [42–46]) to study the complexity of the
ground state of the harmonic chain on a segment with Dirichlet boundary conditions with
respect to a particular factorized Gaussian state. The method, first developed by Nielsen et
al. [2–4], boils down to the calculation of the length of geodesics in the “space of circuits”,
namely that of unitary transformations connecting the states at hand. The outcome heavily
depends on the geometry such a space is equipped with. This can be controlled by choosing
a so called “cost function” which defines a length functional on the space being considered.
In the following we will employ two different choices of the cost function.

The Hamiltonian of the harmonic chain made by N + 1 sites and with nearest neighbour
spring-like interaction reads

Ĥ =
N∑
i=0

(
1

2m
p̂2
i +

mω2

2
q̂2
i +

κ̃

2
(q̂i+1 − q̂i)2

)
, (3.1)

where the position operators q̂i and the momentum operators p̂i are Hermitean operators
satisfying the canonical commutation relations [q̂i, q̂j] = [p̂i, p̂j] = 0 and [q̂i, p̂j] = iδi,j (the
notation ~ = 1 has been adopted). In our analysis the harmonic chain is defined on a
segment and Dirichlet boundary conditions are imposed at both its endpoints, namely q̂0 =

q̂N = p̂0 = p̂N = 0. A canonical transformation preserves the canonical commutation
relations. In particular, considering the canonical transformation given by p̂i → p̂i/β and
q̂i → βq̂i, with β

4 = 1/(mκ̃), allows to write (3.1) as follows

Ĥ =
1

2 δ

N∑
i=0

(
p̂2
i + ω2δ2 q̂2

i + (q̂i+1 − q̂i)2
)
, δ =

√
m

κ̃
. (3.2)

A standard procedure (see e.g. [47]) allows to diagonalise this Hamiltonian in terms of cre-
ation and annihilation operators. The dispersion relation reads

ωk ≡
√
ω2 +

4κ̃

m

[
sin(πk/(2N))

]2
> ω , 1 6 k 6 N − 1 . (3.3)

It is important to remark that this model is not translation invariant. This implies that the
zero mode does not occur; hence ωk|ω=0 > 0 and therefore the two-point correlators 〈q̂iq̂j〉
and 〈p̂ip̂j〉 are well defined when ω = 0.

The continuum limit corresponds to δ → 0 and N →∞ with Nδ = L kept constant, where
δ plays the role of the ultraviolet cutoff and L is the size of the system. By introducing the
fields through the substitutions qi → Φ(x) and pi → Π(x) δ, it is straightforward to find that
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the continuum limit of (3.2) gives

H =
1

2

∫ L

0

[
Π2 + ω2 Φ2 +

(
Φ′
)2
]
dx , (3.4)

where
∑N

i (. . . ) δ →
∫ L

0
(. . . )dx has been used. Thus ω corresponds to the mass of a free

scalar field.
We follow closely the procedure described in [6,41], by adapting the analysis performed for

the harmonic chain with periodic boundary conditions to the harmonic chain with Dirichlet
boundary conditions that we are considering. The reference state to consider is a factorized
Gaussian state characterized only by the frequency ωR, being the corresponding spring cou-
pling vanishing. Given this choice for the reference state and considering a generalized κ

cost function [6], by adapting the analysis of [6, 41] one finds for the complexity

Cκ =
1

2κ

N−1∑
k=1

∣∣∣ log
(
ωk/ωR

)∣∣∣κ . (3.5)

An important special case corresponds to κ = 1, as originally discussed in [2], because
this complexity is induced by the cost function having the most natural interpretation in the
theory of computation. By employing the dispersion relation (3.3), the C1 complexity reads

C1 =
1

2

N−1∑
k=1

∣∣∣ log
(
ωk/ωR

)∣∣∣ =
1

4

N−1∑
k=1

∣∣∣∣∣ log

(
ω2

ω2
R

+
4κ̃

mω2
R

[
sin

(
πk

2N

)]2
)∣∣∣∣∣ . (3.6)

Let us first consider the massless regime, where analytic results can be obtained. Setting
ω = 0 in (3.6) and focusing on the regime where the absolute value can be remove, namely
when ωRδ/2 6 sin[π/(2N)], we get

C1 =
1

2

N−1∑
k=1

log

[
γ sin

(
πk

2N

)]
=
N − 1

2
log γ +

1

2
S1 , γ ≡ 2

δ ωR

, (3.7)

where we have introduced

S1 ≡
N−1∑
k=1

log

(
sin

(
πk

2N

))
. (3.8)

This sum, which can be written also in terms of the q-Pochhammer symbol (a; q)k, can be
performed, finding

S1 = − (N − 1) log 2 + Re
(

log
[(
e−iπ/N ; e−iπ/N)

N−1

])
= − (N − 1) log 2 +

1

2
logN ,

(3.9)
where the final expression has been found by numerical inspection.
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Figure 3. The complexity C1 when ω 6= 0 with respect to the massless result (3.11). In
the left panel we show that for large N this difference is a constant depending on ω (here
LωR = 0.5). In the right panel the dependence on ω is shown for N = 10000.

The result (3.9) leads to write (3.7) for any finite value of N as follows

C1

∣∣
ω=0

=
N − 1

2
log(γ/2) +

1

4
logN =

N − 1

4
log

(
κ̃

mω2
R

)
+

1

4
logN . (3.10)

In order to highlight the large N limit behavior, one expresses γ in terms of N ; then, from
(3.10), it can be easily found that

C1

∣∣
ω=0

=
N − 1

2
log

(
N

LωR

)
+

1

4
logN = C(0)

1 −
1

4
logN +

log(LωR)

2
, (3.11)

where we have introduced

C(0)
1 ≡

N logN

2
− log(LωR)

2
N . (3.12)

The leading term of (3.11) in the large N limit is the same one occurring in C1 for the
harmonic chain with periodic boundary conditions, which also includes a linear divergence
in N [6]. We remark that in (3.11) we observe a logarithmic divergence which does not occur
in the case of periodic boundary conditions. This logarithmic divergence remains also taking
the limit of large L, which is the regime comparable with the holographic calculations.

Notice that, setting κ̃/m = 1 in (3.10), which leads to N = L, one obtains a linear
divergence and a subleading logarithmic divergence in the thermodynamic limit N →∞.

We find it worth investigating how the above analysis gets modified when ω 6= 0 in (3.6).
In this case we are not able to perform the sum analytically, even in the regime where the
absolute value can be ignored. Evaluating (3.6) numerically, we find that

C1 = C(0)
1 −

1

4
logN +O(1) = C1

∣∣
ω=0

+O(1) , (3.13)
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where the O(1) terms depend on ω in a non trivial way. In particular, (3.13) tells us that
the logarithmic divergence occurs also when ω 6= 0 with the same coefficient −1/4 of the
massless case.

In figure 3 we provide numerical evidence of (3.13). In the left panel we show that the
O(1) term in (3.13) depends on ω at a given value of LωR. In the right panel we plot this
term as function of ω for a few different values of LωR, showing that at a given large value
of N the resulting curve is independent of LωR.

Comparing (3.13) with the analogous result for the C1 complexity of the massive harmonic
chain with periodic boundary conditions [6], we notice that the presence of the boundaries
leads to the occurrence of the logarithmic divergence −1

4
logN that is not observed for

periodic boundary conditions.
Another important case to consider is the cost function that leads to the complexity (3.5)

with κ = 2. This cost function leads to a tractable Riemannian geometry in the space of
circuits [6, 41]. When κ = 2, we can get rid of the absolute value in the sum (3.5), finding

Cκ=2 = (C2)2 =
1

4

N−1∑
k=1

[
log
(
ωk/ωR

)]2

, (3.14)

where ωk is the dispersion relation (3.3).
When ω = 0, the generic term of the sum (3.14) simplifies, leading to

Cκ=2

∣∣
ω=0

=
1

4

N−1∑
k=1

(
log

[
γ sin

(
πk

2N

)])2

. (3.15)

This expression can be decomposed as follows

Cκ=2

∣∣
ω=0

=
N − 1

4

(
log γ

)2
+

log γ

2
S1 +

1

4
S2 , (3.16)

where S1 (defined in (3.8)) has been evaluated in (3.9) and we have introduced

S2 ≡
N−1∑
k=1

(
log

[
sin

(
πk

2N

)])2

. (3.17)

The large N regime of S2 has been analyzed in the Appendix B by employing the Euler-
Maclaurin formula, finding the following expansion

Cκ=2

∣∣
ω=0

= C(0)
κ=2

∣∣
ω=0

+ α logN + α0 +O(1) , (3.18)

where

C(0)
κ=2

∣∣
ω=0
≡ N (logN)2

4
− log (LωR)

2
N logN +

[
π2

12
+
(
log (LωR)

)2
]
N

4
+

(logN)2

8
, (3.19)
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Figure 4. The logarithmic term of C2 when ω = 0 for large N (see (3.18)).

which collects all the divergent terms whose coefficients have been obtained analytically.
Instead, the coefficients α and α0 in (3.18) are defined as

α =
log(πLωR)

4
− 11

24
+ ν , (3.20)

α0 = −
(

log(LωR/2)
)2

4
− log 2

2
log(LωR/2)− 1

2
+

(
11

24
− log(π/2)

8
− µ

)
log(π/2) , (3.21)

where the constants ν and µ have to be found through a numerical fit.
In figure 4 we provide a numerical check of the expansion (3.18) for large N . In particular,

the data show the occurrence of a logarithmic divergence, whose coefficient in (3.20) must be
determined numerically through a fitting procedure. This coefficient is a non trivial function
of LωR.

Performing the analogous calculation in the harmonic chain with periodic boundary con-
ditions, whose dispersion relation is different from (3.3), and comparing the final result for
large N with (3.18) we find that the term O

(
(logN)2

)
does not occur for the harmonic chain

with periodic boundary conditions.
Also for Cκ=2|ω=0, we remark that the above calculations have been performed for finite L

and that the regime of large L is the one to compare with the holographic results discussed
in §2.
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4 Holographic subregion complexity

In [22] it has been proposed that the complexity of the state corresponding to a subregion of
the whole space, obtained by tracing out the rest of the Hilbert space from a given density
matrix, has a simple holographic description. This “CV subregion complexity” requires first
to compute the minimal area surface anchored to the given subregion, whose area provides
its holographic entanglement entropy through the Ryu-Takayanagi (RT) prescription [48].
These minimal area “RT surfaces” in the context of AdS/BCFT have been studied extensively
[13, 14, 24, 49–54]. The holographic CV subregion complexity is then calculated from the
volume of the intersection of the maximal time slice considered in section 2.2, with the
spacetime region delimited by the RT surface of the given subregion. There exist also
corresponding proposals for CA and CV2.0 subregion complexity [33, 55], but we focus on
the CV case. The extension of these proposals to the non-static cases can also be found
in [33]. Field theory considerations about the subregion complexity appear in [55,56].

In the holographic dual of the BCFT2, the CV complexity of a single subregion (a single
interval of length `) is simply the area of the part of spacetime enclosed by the RT surface
on the t = 0 time slice. The RT surface, which is just an arc of circle in this case, can change
discontinuously as the distance of the subregion from the boundary increases. In fact, the
minimal area condition defining the RT surface can produce transitions between different
configurations.

If the interval under consideration is attached to the boundary, the RT surface is an arc
of circle with center at the boundary and radius equal to `, so it ends on the brane Q in
the bulk, see figure 5, case (a). If we move the interval away from the boundary by a small
amount d, the RT surface is composed by the two arcs of circle with center at the boundary
and radii d and d + `, connecting the two end-points of the interval to the brane Q. The
subregion complexity is proportional to the volume of the part of the bulk space in between
these two lines, as in figure 5, case (b).

If the distance d is increased past a critical value dc, instead, the RT surface is the semi-
circle connecting the two end-points of the interval, as in the case without boundary, see
figure 5, case (c). Thus, at dc the volume of the spacetime region enclosed by the RT surface,
and so the subregion complexity, is expected to have a discontinuous jump. We are going to
show that this is indeed the case. This phase transition is very similar to the one found in
the case of two or more intervals in [57,58] in absence of boundaries. Similar finite jumps of
the complexity have been found in [59–61].

Let us quantify these statements by calculating the various subregion complexities dis-
cussed so far. We again adopt UV and IR cut-offs ε and zIR. Let us start from the subregion
complexity in case (c), which is known to be [22]

C
(c)
V =

R2

GN l

(
`

ε
− π

)
. (4.1)
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Figure 5. RT surfaces and corresponding spacetime regions relevant for the subregion com-
plexity of an interval of length `. In figure (a) the interval is attached to the boundary. In
cases (b) and (c) it is at finite distance d from the boundary.

Obviously, it does not depend on the boundary data in any way, nor on the distance of the
interval from the boundary. It has the usual UV divergence of the holographic complexity,
with an extra finite term.

The volume of interest in case (a), where the interval is attached to the boundary, can be
calculated e. g. as

V (a) =

∫ ` sinα

ε

R2

z2 dz

∫ x(z)

−z cotα

dx+ 2

∫ `

` sinα

R2

z2 dz

∫ x(z)

0

dx , (4.2)

where x(z) parameterizes the circle, giving

C
(a)
V =

R2

GN l

[
`

ε
+ cotα

(
log

(
` sinα

ε

)
+ 1

)
+ α− π

]
. (4.3)

The boundary has introduced both a subleading UV divergence and finite pieces depending
on the boundary data α. In the limit α → π/2 the result is a half of the one in (4.1) with
` → 2`, consistently. For α = π/2, i. e. zero tension brane, the subleading divergence is
absent.

In case (b), where the interval is at a small distance d from the boundary, the complexity
is readily obtained from the difference of two contributions like V (a) with the substitutions
`→ `+ d and `→ d respectively

C
(b)
V =

R2

GN l

[
`

ε
+ cotα log

(
`

d
+ 1

)]
. (4.4)

The dependence on the boundary is now encoded in a finite term, which is also a function
of the distance d of the interval from the boundary; as usual it vanishes for α = π/2. For
α = π/2 it can be also calculated as the difference of two contributions like C(c)

V with `→ `+d

and `→ d respectively.
The critical distance for the transition between configurations (b) and (c) reads dc =

`/2(secα/2− 1) [50]. In higher dimensions there exists a limiting value αc of the angle α for
the transition to happen - for α < αc configuration (c) is always preferred, even at d = 0 [52].
In three spacetime dimensions, instead, configuration (b) is the dominant one for any value
of α if the distance d is small enough. Thus, by comparing (4.4) evaluated at dc with (4.1)
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we get, as anticipated above, the (finite) subregion complexity discontinuity

∆C
(b/c)
V = C

(b)
V − C

(c)
V =

R2

GN l

[
2 cotα log

(
cot

α

4

)
+ π
]
. (4.5)

5 Conclusions

In this manuscript we explored the effect of the presence of a boundary on the complexity by
considering some simple models in one spatial dimension. We performed calculations both
on the lattice, where we have evaluated the complexity in the harmonic chain with Dirichlet
boundary conditions along the lines reported in [6, 41], and in the holographic setup of
AdS3/BCFT2 of [13], where we have employed the CV, CA and CV2.0 prescriptions.

Our quantitative results are given by (2.8) for the CV complexity, (2.50) for the CA com-
plexity and (2.51) for the CV2.0 complexity in the holographic setup. As for the complexity
of the harmonic chain, for C1 at ω = 0 we have obtained the analytic expression (3.10) valid
for any size N of the system. In the large N limit, the expansion of C1 is (3.11) when ω = 0

and (3.13) when ω > 0. Instead, the expansion of Cκ=2 at ω = 0 is given by (3.18).
The comparison between these results and the corresponding ones obtained in the infinite

line or in periodic systems [6, 32, 34, 35] provides the effect of the presence of the boundary.
In the AdS3/BCFT2 setup, we observe that the occurrence of a boundary introduces a
logarithmic divergence in CV and CV2.0, which is not present in AdS3/CFT2 for the infinite
line or for the circle, whose coefficient depends on the boundary data. Instead, for CA this
logarithmic divergence is not observed and the dependence on the boundary data occurs in
the finite term. This is an important difference between the CV and the CA prescriptions.

As for the complexity of harmonic chains, in C1 and Cκ=2 we observe respectively a di-
vergence O(logN) and a divergence O

(
(logN)2

)
in the number of sites of the system, that

do not occur when the system is periodic. It is very instructive to compare the holographic
results with the ones obtained for the harmonic chain, although the models are not directly
comparable. Indeed, a logarithmic divergence is observed in C1 for the harmonic chain (see
(3.11) and (3.13)), like in CV and CV2.0.

The study of the effects of the boundaries on the complexity deserves further analysis.
Interesting directions concern scenarios involving higher dimensions [20], non trivial time
dependence [12, 36, 62, 63], mixed states [55] and the role of spacetime singularities [64–66].
It is also interesting to explore the effects of the boundaries in the connections between
complexity with the laws of thermodynamics [67,68].
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A A different regularization scheme for the WDW patch

In this appendix we confirm the result (2.50) for CA by retrieving it in a different regular-
ization scheme. We adopt here a regularization similar to that used in [21], namely we use
z = const surfaces in the region 0 < x < L and connect those to the boundary Q through
r = const surfaces in the “boundary region”, where cylindrical coordinates are adopted, see
figure 6. Obviously, all the central contributions will be the same as before, so we only need
to evaluate the contributions coming from the “boundary region”.

Let us start with the alternative bulk contribution from WDWL: t ∈ [−r, r] , r ∈
[ε, zIR] , θ ∈

[
0, π

2
− α

]
. Since

√
−g = R

3

r
2

cos
3
θ
, R− 2Λ = − 4

R
2 , we get

AWDWL
=

1

16πGN

∫
WDWL

d3x
√
−g (R− 2Λ) = − R

2πGN

f(α) log
(zIR
ε

)
, (A.1)

which is identical to the contribution (2.15) obtained with the other regularization.
Moving on to the regulator surfaces, we have, for the UV one at r = ε (i. e. τLε ):

t ∈ [−ε, ε] , r = ε, θ ∈
[
0, π

2
− α

]
. The unit normal outward-pointing vector is sµ =

− r cos θ
R

(0, 1, 0). Moreover
√
|h| = R

2

ε cos
2
θ
, K = cos θ

R
. Thus

A
τ
L
ε

=
1

8πGN

∫
τ
L
ε

dtdθ
√
|h|K =

R

2πGN

1

2
log

(
1 + cosα

sinα

)
. (A.2)

Comparing this result with formula (2.19) we can see that the alternative regulator generates
only the logarithmic part of f(α). However this difference does not matter because all of
these contributions cancel with each other when we take into account also the other regulator
at r = zIR (i. e. τLzIR), just like in the other scheme.

The timelike joint at r = ε is given by JLε : t ∈ [−ε, ε] , r = ε, θ = π
2
− α. With

the alternative choice of regulator the angles between the outward-pointing normals (that
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Figure 6. The future half of the WDW patch in the alternative regularization scheme.

are always diverging) are all Φ = π/2. Moreover the induced metric is simply the time
component of the bulk one, namely

√
−γ = R/(ε sinα). Thus

A
J
L
ε

=
1

8πGN

∫
J
L
ε

dt
√
−γΦ =

R

8GN

1

sinα
. (A.3)

An identical term is found for the joint at r = zIR. Adding the timelike joints together we
recover the previous result (2.26).

The future null boundary is given by N F
L : t = r ∈ [ε, zIR] , θ ∈

[
0, π

2
− α

]
. We can adopt

the following, non affine, parameterization: xµ(λ, θ) = (Bλ,Bλ, θ) ⇒ kµ = B(1, 1, 0), so
that √γ = R

cos θ
, κ = −2B

r
, Θ = 0, which bring us to

ANFL =
−1

8πGN

∫
NFL

dλdθ
√
γκ =

1

8πGN

∫ π/2−α

0

dθ

∫ zIR

ε

dr
R

r cos θ
, (A.4)

that is, once summed with the past null boundary contribution,

ANL =
R

2πGN

log
(zIR
ε

)
log

(
1 + cosα

sinα

)
, (A.5)
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which is identical to (2.37).
Let us now consider the future front joint ΣL

ε given by t = r = ε, θ ∈
[
0, π

2
− α

]
. To

evaluate its contribution to the gravitational action we need the future directed tangent null
vector to the null surface N F

L and the outward-pointing unit normal vector to the timelike
surface τLε : k

µ = B(1, 1, 0), sµ = − r cos θ
R

(0, 1, 0), which give √γ = R
cos θ

, a = log |k · s| =

log
(
BR cos θ

ε

)
. Adding the analogous piece from the past joint, we evaluate

A
Σ
L
ε

= − 2

8πGN

∫
Σ
L
ε

dθ
√
γa = − R

4πGN

∫ π/2−α

0

dθ
log
(
BR cos θ

ε

)
cos θ

, (A.6)

which is the same as (2.45).
We now consider the contributions coming from the brane Q. In the alternative scheme

the relevant piece of Q is: t ∈ [−r, r] , r ∈ [ε, zIR] , θ = π
2
− α. The induced metric is√

|h| = R
2

r
2

sin
2
α
, and recalling that T = cosα/R we get

AQ =
1

8πGN

∫
Q

dtdr
√
|h| (K − T ) =

R

4πGN

cosα

sin2 α
log
(zIR
ε

)
, (A.7)

which again is identical to the result (2.49) we found using the original scheme.
The null joint will again give a vanishing contribution, and we will again assume the

corners’ contributions to be vanishing as well. Thus, in the end we see that although little
modifications arise in some of the terms contributing to A, the final result for complexity
does not change in this regularization scheme.

B Cκ=2 for large N

In this appendix we consider the large N behavior of the sum S2 defined in (3.17), in order
to study Cκ=2 in this regime. The result of this discussion is reported in (3.18).

The most natural way to approximate the sum S2 when N → ∞ is based on an integral
S̃2. In particular, by introducing a ≡ π/(2N)→ 0 and θ = ak, one finds

S̃2 =
1

a

∫ π
2
−a

a

[
log(sin θ)

]2
dθ =

π
(
π2 + 12 [log 2]2

)
24 a

−
(

log a− 2
)

log a− 2 +O(a) . (B.1)

The difference between a sum S =
∑b

n=a f(n) and the corresponding integral I =
∫ b
a
f(x)dx

is given by the Euler-Maclaurin formula

S − I =

p∑
k=1

Bk

k!

(
f (k−1)(b)− f (k−1)(a)

)
+Rp , (B.2)
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where Bk are the Bernoulli numbers, f (k) is k-th derivative of f and the rest Rp reads [69]

Rp = (−1)p+1

∫ b

a

f (p)(x)
Pp(x)

p!
dx , (B.3)

where Pk(x) = Bk(x− [x]), being Bk(x) the Bernoulli polynomials and [x] is the integer part
of x [70]. Formula (B.2) holds for every integer p ≥ 1. It is possible to show that (B.3) is
bounded as follows [69]

|Rp| ≤
2ζ(p)

(2π)p

∫ b

a

|f (p)(x)| dx . (B.4)

The Euler-Maclaurin formula with f(x) = log
[
sin
(
πx
2N

)]
can be used to explore the large

N behavior of C1, justifying (3.9).
In the following we employ the Euler-Maclaurin formula to study S2 for large N , hence

f(x) =
(
log
[
sin
(
πx
2N

)])2 in this case. Choosing p = 2 in (B.2) leads to

S2 − S̃2 =
1

2
(logN)2 +

(
1

6
− log

π

2

)
logN − 1

6
log

π

2
+

1

2

(
log

π

2

)2

+R2 , (B.5)

where we are not able to evaluate analytically the integral R2. Nonetheless, for large N we
find, using (B.4), the following bound

|R2| .
ζ(2)

π2

(
logN − log

π

2

)
. (B.6)

This bound induces to substitute R2 with 4ν logN + 4µ for large N , where ν and µ are con-
stant that can be found numerically through a fitting procedure. This observation combined
with (B.1) and (B.5) allows to obtain (3.18).
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