1,753 research outputs found
Abstract basins of attraction
Abstract basins appear naturally in different areas of several complex
variables. In this survey we want to describe three different topics in which
they play an important role, leading to interesting open problems
Patterns of CT lung injury and toxicity after stereotactic radiotherapy delivered with helical tomotherapy in early stage medically inoperable NSCLC
To evaluate toxicity and patterns of radiologic lung injury on CT images after hypofractionated image-guided stereotactic body radiotherapy (SBRT) delivered with helical tomotherapy (HT) in medically early stage inoperable non-small-cell lung cancer (NSCLC)
Recommended from our members
Immune factors preceding diagnosis of glioma: a Prostate Lung Colorectal Ovarian Cancer Screening Trial nested case-control study.
BackgroundEpidemiological studies of adult glioma have identified genetic and environmental risk factors, but much remains unclear. The aim of the current study was to evaluate anthropometric, disease-related, and prediagnostic immune-related factors for relationship with glioma risk.MethodsWe conducted a nested case-control study among the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. One hundred and twenty-four glioma cases were identified and each matched to four controls. Baseline characteristics were collected at enrollment and were evaluated for association with glioma status. Serum specimens were collected at yearly intervals and were analyzed for immune-related factors including TGF-β1, TNF-α, total IgE, and allergen-specific IgE. Immune factors were evaluated at baseline in a multivariate conditional logistic regression model, along with one additional model that incorporated the latest available measurement.ResultsA family history of glioma among first-degree relatives was associated with increased glioma risk (OR = 4.41, P = .002). In multivariate modeling of immune factors at baseline, increased respiratory allergen-specific IgE was inversely associated with glioma risk (OR for allergen-specific IgE > 0.35 PAU/L: 0.59, P = .03). A logistic regression model that incorporated the latest available measurements found a similar association for allergen-specific IgE (P = .005) and showed that elevated TGF-β1 was associated with increased glioma risk (P-value for trend <.0001).ConclusionThe results from this prospective prediagnostic study suggest that several immune-related factors are associated with glioma risk. The association observed for TGF-β1 when sampling closer to the time of diagnosis may reflect the nascent brain tumor's feedback on immune function
Screening of Nuclear Reactions in the Sun and Solar Neutrinos
We quantitatively determine the effect and the uncertainty on solar neutrino
production arising from the screening process. We present predictions for the
solar neutrino fluxes and signals obtained with different screening models
available in the literature and by using our stellar evolution code. We explain
these numerical results in terms of simple laws relating the screening factors
with the neutrino fluxes. Futhermore we explore a wider range of models for
screening, obtained from the Mitler model by introducing and varying two
phenomenological parameters, taking into account effects not included in the
Mitler prescription. Screening implies, with respect to a no-screening case, a
central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium
(Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal.
We also find that uncertainties due to the screening effect ar at the level of
1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding
3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have
replaced the previous paper with a uuencoded file (the text is the same) for
any problem please write to [email protected]
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Muonic hydrogen cascade time and lifetime of the short-lived state
Metastable muonic-hydrogen atoms undergo collisional -quenching,
with rates which depend strongly on whether the kinetic energy is above
or below the energy threshold. Above threshold, collisional
excitation followed by fast radiative
deexcitation is allowed. The corresponding short-lived component
was measured at 0.6 hPa room temperature gas pressure, with
lifetime ns (i.e.,
at liquid-hydrogen density) and population
% (per atom). In
addition, a value of the cascade time, ns, was found.Comment: 4 pages, 3 figure
Observation of Long-Lived Muonic Hydrogen in the 2S State
The kinetic energy distribution of ground state muonic hydrogen atoms
mu-p(1S) is determined from time-of-flight spectra measured at 4, 16, and 64
hPa H2 room-temperature gas. A 0.9 keV-component is discovered and attributed
to radiationless deexcitation of long-lived mu-p(2S) atoms in collisions with
H2 molecules. The analysis reveals a relative population of about 1%, and a
pressure-dependent lifetime (e.g. (30.4 +21.4 -9.7) ns at 64 hPa) of the
long-lived mu-p(2S) population, equivalent to a 2S-quench rate in mu-p(2S) + H2
collisions of (4.4 +2.1 -1.8) 10^11 s^-1 at liquid hydrogen density.Comment: 4 pages, 2 figures, accepted for publication in Physical Review
Letter
Angular distributions of scattered excited muonic hydrogen atoms
Differential cross sections of the Coulomb deexcitation in the collisions of
excited muonic hydrogen with the hydrogen atom have been studied for the first
time. In the framework of the fully quantum-mechanical close-coupling approach
both the differential cross sections for the transitions and
-averaged differential cross sections have been calculated for exotic atom
in the initial states with the principle quantum number at relative
motion energies eV and at scattering angles
. The vacuum polarization shifts of the
-states are taken into account. The calculated in the same approach
differential cross sections of the elastic and Stark scattering are also
presented. The main features of the calculated differential cross sections are
discussed and a strong anisotropy of cross sections for the Coulomb
deexcitation is predicted.Comment: 5 pages, 9 figure
On the realization of Symmetries in Quantum Mechanics
The aim of this paper is to give a simple, geometric proof of Wigner's
theorem on the realization of symmetries in quantum mechanics that clarifies
its relation to projective geometry. Although several proofs exist already, it
seems that the relevance of Wigner's theorem is not fully appreciated in
general. It is Wigner's theorem which allows the use of linear realizations of
symmetries and therefore guarantees that, in the end, quantum theory stays a
linear theory. In the present paper, we take a strictly geometrical point of
view in order to prove this theorem. It becomes apparent that Wigner's theorem
is nothing else but a corollary of the fundamental theorem of projective
geometry. In this sense, the proof presented here is simple, transparent and
therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page
Fusion rate enhancement due to energy spread of colliding nuclei
Experimental results for sub-barrier nuclear fusion reactions show cross
section enhancements with respect to bare nuclei which are generally larger
than those expected according to electron screening calculations. We point out
that energy spread of target or projectile nuclei is a mechanism which
generally provides fusion enhancement. We present a general formula for
calculating the enhancement factor and we provide quantitative estimate for
effects due to thermal motion, vibrations inside atomic, molecular or crystal
system, and due to finite beam energy width. All these effects are marginal at
the energies which are presently measurable, however they have to be considered
in future experiments at still lower energies. This study allows to exclude
several effects as possible explanation of the observed anomalous fusion
enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl
- …
