1,635 research outputs found

    De wetenschappelijke beoefening der psychiatrie

    Get PDF

    Psychische aktiviteit

    Get PDF
    Rectorale oratie Vrije Universiteit 191

    Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks

    Get PDF
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose a novel approach that models future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. Future frame synthesis is challenging, as it involves low- and high-level image and motion understanding. We propose a novel network structure, namely a Cross Convolutional Network to aid in synthesizing future frames; this network structure encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, as well as on real-wold videos. We also show that our model can be applied to tasks such as visual analogy-making, and present an analysis of the learned network representations.Comment: The first two authors contributed equally to this wor

    Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks

    Full text link
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first two authors contributed equally to this work. Project page: http://visualdynamics.csail.mit.ed

    Luther and Evangelical Radicalism

    Get PDF
    The purpose of this thesis is to explore the relationship between Luther and this disparate radical element of the reformation. For this purpose we must distinguish between two aspects of the Radical Movement. Luther was forced to relate himself to Evangelical Radicalism as a historical phenomenon. This aspect of the relationship will be discussed in Chapter II of the thesis. Of greater importance is the theological relationship between Luther and Radicalism. Here we are concerned with a tendency rather than with a Historical group. While this tendency found expression in a historical group, it was also present in some of Luther’s associates, in the medieval Roman Church, and in Zwingli. The theological conflict between Luther and the radical tendency; will be discussed in chapters III and IV. The relationship between Luther and the radicals poses a particular problem concerning the origin of the radical sects. This problem will be discussed in Chapter V

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ± 3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc^2 = 3.8 ± 0.4 μas. Folding in a distance measurement of 16.8^(+0.8)_(-0.7) Mpc gives a black hole mass of M = 6.5 ± 0.2|_(stat) ± 0.7|_(sys) x 10^9 M⊙ . This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity

    The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA

    Get PDF
    The Galactic center supermassive black hole Sagittarius A* (Sgr A*) is one of the most promising targets to study the dynamics of black hole accretion and outflow via direct imaging with very long baseline interferometry (VLBI). At 3.5 mm (86 GHz), the emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). We present the first observations of Sgr A* with the phased Atacama Large Millimeter/submillimeter Array (ALMA) joining the GMVA. Our observations achieve an angular resolution of ~87 μas, improving upon previous experiments by a factor of two. We reconstruct a first image of the unscattered source structure of Sgr A* at 3.5 mm, mitigating the effects of interstellar scattering. The unscattered source has a major-axis size of 120 ± 34 μas (12 ± 3.4 Schwarzschild radii) and a symmetrical morphology (axial ratio of 1.2_(-0.2)^(+0.3)), which is further supported by closure phases consistent with zero within 3σ. We show that multiple disk-dominated models of Sgr A* match our observational constraints, while the two jet-dominated models considered are constrained to small viewing angles. Our long-baseline detections to ALMA also provide new constraints on the scattering of Sgr A*, and we show that refractive scattering effects are likely to be weak for images of Sgr A* at 1.3 mm with the Event Horizon Telescope. Our results provide the most stringent constraints to date for the intrinsic morphology and refractive scattering of Sgr A*, demonstrating the exceptional contribution of ALMA to millimeter VLBI

    Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging

    Get PDF
    Computational image reconstruction algorithms generally produce a single image without any measure of uncertainty or confidence. Regularized Maximum Likelihood (RML) and feed-forward deep learning approaches for inverse problems typically focus on recovering a point estimate. This is a serious limitation when working with underdetermined imaging systems, where it is conceivable that multiple image modes would be consistent with the measured data. Characterizing the space of probable images that explain the observational data is therefore crucial. In this paper, we propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging (DPI) employs an untrained deep generative model to estimate a posterior distribution of an unobserved image. This approach does not require any training data; instead, it optimizes the weights of a neural network to generate image samples that fit a particular measurement dataset. Once the network weights have been learned, the posterior distribution can be efficiently sampled. We demonstrate this approach in the context of interferometric radio imaging, which is used for black hole imaging with the Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging (MRI).Comment: This paper has been accepted to AAAI 2021. Keywords: Computational Imaging, Normalizing Flow, Uncertainty Quantification, Interferometry, MR

    Efficient Bayesian Computational Imaging with a Surrogate Score-Based Prior

    Full text link
    We propose a surrogate function for efficient use of score-based priors for Bayesian inverse imaging. Recent work turned score-based diffusion models into probabilistic priors for solving ill-posed imaging problems by appealing to an ODE-based log-probability function. However, evaluating this function is computationally inefficient and inhibits posterior estimation of high-dimensional images. Our proposed surrogate prior is based on the evidence lower-bound of a score-based diffusion model. We demonstrate the surrogate prior on variational inference for efficient approximate posterior sampling of large images. Compared to the exact prior in previous work, our surrogate prior accelerates optimization of the variational image distribution by at least two orders of magnitude. We also find that our principled approach achieves higher-fidelity images than non-Bayesian baselines that involve hyperparameter-tuning at inference. Our work establishes a practical path forward for using score-based diffusion models as general-purpose priors for imaging

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux ratio ≳10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 ± 0.7) × 10^9 M⊙. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible
    • …
    corecore