275 research outputs found

    Educate, Empower, Employ

    Get PDF
    Since the start of the Syrian Civil War in 2011, Lebanon is estimated to have taken in more than two million Syrian refugees. Due to policy and security obstacles, many of these refugees are considered by the Lebanese government to be living in Lebanon illegally, which restricts, among other aspects, their ability to continue employment or education. Based on field research conducted in-country through interviews, surveys, and focus groups, the authors have identified areas where innovative and inclusive higher education opportunities can be provided for Syrian refugees in Lebanon to allow them to move forward with their lives in self-sufficiency and dignity. The research aimed to answer the following questions: Where are the intersections of the interests and expectations of Syrian refugees in Lebanon with higher education and employment opportunities? How do individual characteristics such as gender, age, time in exile, and class affect refugees’ perceptions of their higher education needs and ambitions? What are the current barriers to accessing higher education, and what is the necessary support needed to overcome the barriers? Where are the opportunities for universities to fill the gaps in programming or resources

    Les mammifères du « Jardin animé » du Cap Ferrat

    Get PDF

    Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries

    Full text link
    We extend the definition of generalized parity PP, charge-conjugation CC and time-reversal TT operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold classification. In particular we show that TPTP and CTPCTP are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian HH to admit a PP-reflecting symmetry which generates the PP-pseudounitary and the PP-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the PP-unitary evolution of a physical system are also given.Comment: 20 page

    Cyclone-induced surface ozone and HDO depletion in the Arctic

    Get PDF
    Ground-based, satellite, and reanalysis datasets were used to identify two similar cyclone-induced surface ozone depletion events at Eureka, Canada (80.1° N, 86.4° W), in March 2007 and April 2011. These two events were coincident with observations of hydrogen deuterium oxide (HDO) depletion, indicating that condensation and sublimation occurred during the transport of the ozone-depleted air masses. Ice clouds (vapour and crystals) and aerosols were detected by lidar and radar when the ozone- and HDO-depleted air masses arrived over Eureka. For the 2007 event, an ice cloud layer was coincident with an aloft ozone depletion layer at 870 m altitude on 2–3 March, indicating this ice cloud layer contained bromine-enriched blowing-snow particles. Over the following 3 days, a shallow surface ozone depletion event (ODE) was observed at Eureka after the precipitation of bromine-enriched particles onto the local snowpack. A chemistry–climate model (UKCA) and a chemical transport model (pTOMCAT) were used to simulate the surface ozone depletion events. Incorporating the latest surface snow salinity data obtained for the Weddell Sea into the models resulted in improved agreement between the modelled and measured BrO concentrations above Eureka. MERRA-2 global reanalysis data and the FLEXPART particle dispersion model were used to study the link between the ozone and HDO depletion. In general, the modelled ozone and BrO showed good agreement with the ground-based observations; however, the modelled BrO and ozone in the near-surface layer are quite sensitive to the snow salinity. HDO depletion observed during these two blowing-snow ODEs was found to be weaker than pure Rayleigh fractionation. This work provides evidence of a blowing-snow sublimation process, which is a key step in producing bromine-enriched sea-salt aerosol

    Bitangential interpolation in generalized Schur classes

    Full text link
    Bitangential interpolation problems in the class of matrix valued functions in the generalized Schur class are considered in both the open unit disc and the open right half plane, including problems in which the solutions is not assumed to be holomorphic at the interpolation points. Linear fractional representations of the set of solutions to these problems are presented for invertible and singular Hermitian Pick matrices. These representations make use of a description of the ranges of linear fractional transformations with suitably chosen domains that was developed in a previous paper.Comment: Second version, corrected typos, changed subsection 5.6, 47 page

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case

    Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri

    Get PDF
    The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However most gene circuits in a cell are under control of external signals and thus quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intringuing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks
    corecore