186 research outputs found

    An Empirical Analysis of the Relationship between Land Size, Ownership, and Soybean Productivity - New Evidence from the Semi-Arid Tropical Region in Madhya Pradesh, India

    Get PDF
    The intervention of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) at the benchmark site in Madhya Pradesh, India is part of a larger project – “Improving Management of Natural Resources for Sustainable Rainfed Agriculture” funded by the Asian Development Bank (ADB). The main aim of the project is to increase the productivity and sustainability of the medium and high water-holding capacity soils in the intermediate rainfall ecoregions in India, Vietnam, and Thailand. This study examines the relationship between land size and various variables including the soybean productivity relationship among owner-operated and share cropper-operated farms. Primary data was collected using an interview schedule from the villages of Jaoti, Kundhankhedi, Kherkhedi, and Lalatora in Vidisha district, Madhya Pradesh for the 1999 rainy season crop. The productivity of evaluated owner-operated farms is marginally higher at 0.72 t ha-1 compared to 0.68 t ha-1 in case of share cropped farms. The productivity of evaluated trial farms in Lalatora micro-watershed which is used as a demonstration micro-watershed for evaluating improved management practice has been higher at 1.1 t ha-1. The inverse-relationship between land size and productivity is found for both owner-operated (r = 0.27) and share cropper-operated farms (r = 0.30). The average profit is higher among owner-operated farms at Rs. 2045 ha-1 compared to Rs. 1773 ha-1 among share cropped farms. The profitability for the landlords and share croppers is documented and evidence is presented on the exploitative nature of the emerging 20:80 crop sharing contract. The low productivity has been due to waterlogging which occurred due to heavy rains during the sowing period

    Simultaneous chronic rupture of quadriceps tendon and contra-lateral patellar tendon in a patient affected by tertiary hyperparatiroidism

    Get PDF
    Spontaneous ruptures of the extensor mechanism of the knee are very rare. They tend to increase considerably in patients with metabolic diseases such as chronic renal failure, hyperparathyroidism, diabetes, gout, and systemic lupus erythematosus. The reported case regards a 48-year-old man with chronic, spontaneous and simultaneous quadriceps, and contra-lateral patellar tendon rupture. The patient suffered from chronic renal failure and for the past year from tertiary hyperparathyroidism. Ruptured tendons were repaired and both knee were evaluated monthly for the next 12 months. Good functional recovery was achieved on both knees without relapse. This case emphasizes the importance of long-term high parathyroid hormone level in the etiology of tendons ruptures

    Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts

    Full text link
    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB)were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium test beds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive and costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus,which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal waste water streams for cultivation. This review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production

    Optimal liability sharing and court errors: an exploratory analysis

    Get PDF
    We focus in this paper on the effects of court errors on the optimal sharing of liability between firms and financiers, as an environmental policy instrument. Using a structural model of the interactions between firms, financial institutions, governments and courts we show, through numerical simulations, the distortions in liability sharing between firms and financiers that the imperfect implementation of government policies implies. We consider in particular the role played by the efficiency of the courts in avoiding Type I (finding an innocent firm guilty of inappropriate care) and Type II (finding a guilty firm innocent of inappropriate care) errors. This role is considered in a context where liability sharing is already distorted (when compared with first best values) due not only to the courts' own imperfect assessment of safety care levels exerted by firm but also to the presence of moral hazard and adverse selection in financial contracting, as well as of noncongruence of objectives between firms and financiers on the one hand and social welfare maximization on the other. Our results indicate that an increase in the efficiency of the court system in avoiding errors raises safety care levels, thereby reducing the probability of accident, and allowing the social welfare maximizing government to impose a lower liability [higher] share for firms [financiers] as well as a lower standard level of care

    Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)

    Get PDF
    Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Gout. Epidemiology of gout

    Get PDF
    Gout is the most prevalent form of inflammatory arthropathy. Several studies suggest that its prevalence and incidence have risen in recent decades. Numerous risk factors for the development of gout have been established, including hyperuricaemia, genetic factors, dietary factors, alcohol consumption, metabolic syndrome, hypertension, obesity, diuretic use and chronic renal disease. Osteoarthritis predisposes to local crystal deposition. Gout appears to be an independent risk factor for all-cause mortality and cardiovascular mortality and morbidity, additional to the risk conferred by its association with traditional cardiovascular risk factors
    • 

    corecore