1,112 research outputs found

    Breakup of a Stoner model for the 2D ferromagnetic quantum critical point

    Full text link
    Re-interpretation of the results by [A. V. Chubukov et. al., Phys. Rev. Lett. 90, 077002 (2003)] leads to the conclusion that ferromagnetic quantum critical point (FQCP) cannot be described by a Stoner model because of a strong interplay between the paramagnetic fluctuations and the Cooper channel, at least in two dimensions.Comment: 5 pages, 2 EPS figures, RevTeX

    Spontaneous Spin Polarized Currents in Superconductor-Ferromagnetic Metal Heterostructures

    Full text link
    We study a simple microscopic model for thin, ferromagnetic, metallic layers on semi-infinite bulk superconductor. We find that for certain values of the exchange spliting, on the ferromagnetic side, the ground states of such structures feature spontaneously induced spin polarized currents. Using a mean-field theory, which is selfconsistent with respect to the pairing amplitude χ\chi, spin polarization m\vec{m} and the spontaneous current js\vec{j}_s, we show that not only there are Andreev bound states in the ferromagnet but when their energies EnE_n are near zero they support spontaneous currents parallel to the ferromagnetic-superconducting interface. Moreover, we demonstrate that the spin-polarization of these currents depends sensitively on the band filling.Comment: 4 pages, 5 Postscript figures (included

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres
    corecore