97 research outputs found

    Stochastic models in population biology and their deterministic analogs

    Full text link
    In this paper we introduce a class of stochastic population models based on "patch dynamics". The size of the patch may be varied, and this allows one to quantify the departures of these stochastic models from various mean field theories, which are generally valid as the patch size becomes very large. These models may be used to formulate a broad range of biological processes in both spatial and non-spatial contexts. Here, we concentrate on two-species competition. We present both a mathematical analysis of the patch model, in which we derive the precise form of the competition mean field equations (and their first order corrections in the non-spatial case), and simulation results. These mean field equations differ, in some important ways, from those which are normally written down on phenomenological grounds. Our general conclusion is that mean field theory is more robust for spatial models than for a single isolated patch. This is due to the dilution of stochastic effects in a spatial setting resulting from repeated rescue events mediated by inter-patch diffusion. However, discrete effects due to modest patch sizes lead to striking deviations from mean field theory even in a spatial setting.Comment: 47 pages, 9 figure

    Checking Individual Agent Behaviours in Markov Population Models by Fluid Approximation

    Get PDF
    In this chapter, we will describe, in a tutorial style, recent work on the use of fluid approximation techniques in the context of stochastic model checking. We will discuss the theoretical background and the algorithms working out an example. This approach is designed for population models, in which a (large) number of individual agents interact, which give rise to continuous time Markov chain (CTMC) models with a very large state space. We then focus on properties of individual agents in the system, specified by Continuous Stochastic Logic (CSL) formulae, and use fluid approximation techniques (specifically, the so called fast simulation) to check those properties. We will show that verification of such CSL formulae reduces to the computation of reachability probabilities in a special kind of time-inhomogeneous CTMC with a small state space, in which both the rates and the structure of the CTMC can change (discontinuously) with time. In this tutorial, we will discuss only briefly the theoretical issues behind the approach, like the decidability of the method and the consistency of the approximation scheme

    Population Recovery of Nicobar Long-Tailed Macaque Macaca fascicularis umbrosus following a Tsunami in the Nicobar Islands, India

    Get PDF
    Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque.Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal) of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004) after a 9.2 magnitude earthquake. Earlier studies [Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI) on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species

    Economics of invasive species policy and management

    Get PDF
    corecore