19 research outputs found

    Restoring the orangutan in a whole- or half-earth context

    Get PDF
    Various global-scale proposals exist to reduce the loss of biological diversity. These include the Half-Earth and Whole-Earth visions that respectively seek to set aside half the planet for wildlife conservation or to diversify conservation practices fundamentally and change the economic systems that determine environmental harm. Here we assess these visions in the specific context of Bornean orangutans Pongo pygmaeus and their conservation. Using an expert-led process we explored three scenarios over a 10-year time frame: continuation of Current Conditions, a Half-Earth approach and a Whole-Earth approach. In addition, we examined a 100-year population recovery scenario assuming 0% offtake of Bornean orangutans. Current Conditions were predicted to result in a population c. 73% of its current size by 2032. Half-Earth was judged comparatively easy to achieve and predicted to result in an orangutan population of c. 87% of its current size by 2032. Whole-Earth was anticipated to lead to greater forest loss and ape killing, resulting in a prediction of c. 44% of the current orangutan population for 2032. Finally, under the recovery scenario, populations could be c. 148% of their current size by 2122. Although we acknowledge uncertainties in all of these predictions, we conclude that the Half-Earth and Whole-Earth visions operate along different timelines, with the implementation of Whole-Earth requiring too much time to benefit orangutans. None of the theorized proposals provided a complete solution, so drawing elements from each will be required. We provide recommendations for equitable outcomes

    Restoring the orangutan in a Whole- or Half-Earth context

    Get PDF
    Various global-scale proposals exist to reduce the loss of biological diversity. These include the Half-Earth and Whole-Earth visions that respectively seek to set aside half the planet for wildlife conservation or to diversify conservation practices fundamentally and change the economic systems that determine environmental harm. Here we assess these visions in the specific context of Bornean orangutans Pongo pygmaeus and their conservation. Using an expert-led process we explored three scenarios over a 10-year time frame: continuation of Current Conditions, a Half-Earth approach and a Whole-Earth approach. In addition, we examined a 100-year population recovery scenario assuming 0% offtake of Bornean orangutans. Current Conditions were predicted to result in a population c. 73% of its current size by 2032. Half-Earth was judged comparatively easy to achieve and predicted to result in an orangutan population of c. 87% of its current size by 2032. Whole-Earth was anticipated to lead to greater forest loss and ape killing, resulting in a prediction of c. 44% of the current orangutan population for 2032. Finally, under the recovery scenario, populations could be c. 148% of their current size by 2122. Although we acknowledge uncertainties in all of these predictions, we conclude that the Half-Earth and Whole-Earth visions operate along different timelines, with the implementation of Whole-Earth requiring too much time to benefit orangutans. None of the theorized proposals provided a complete solution, so drawing elements from each will be required. We provide recommendations for equitable outcomes

    Global demand for natural resources eliminated more than 100,000 Bornean orangutans

    Get PDF
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales , our knowledge about the effects of these changes on wildlife is much more sparse. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline . Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline . Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability

    In vitro activity of Melaleuca alternifolia (tea tree) oil against bacterial and Candida spp. isolates from clinical specimens

    No full text
    This study investigates the in vitro activity of tea tree oil (TTO) against a range of wild strains of microorganisms isolated from clinical specimens of leg ulcers and pressure sores. The antimicrobial effectiveness of TTO is determined in terms of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) or minimum fungicidal concentration (MFC). The isolates include methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, faecal streptococci, BETA-haemolytic streptococci, coagulasenegative staphylococci, Pseudomonas spp. and coliform bacilli. Eleven Candida spp. isolates from skin and vaginal swabs also are tested. Using an agar dilution assay, the MICs of TTO in 88 out of 90 isolates was 0.5-1.0% (v/v), whilst with P. aeruginosa it was >2% (v/v). A broth microdilution method was used to determine MIC and minimum cidal concentration (MCC) of 80 isolates. In 64 isolates, TTO produced an inhibitory and cidal effect at 3% and 4% (v/v), respectively. S. aureus and Candida spp. were the most susceptible to TTO, with MICs and MBCs of 0.5% and 1%, respectively. P. aeruginosa and the faecal streptococci isolates, with MICs and MBCs of >8%, were resistant to TT
    corecore